
Let the centroid of an equilateral triangle $ABC$ be at the origin. Let one of the sides of the equilateral triangle be along the straight line $x + y = 3$. If $R$ and $r$ be the radius of the circumcircle and the incircle respectively of a triangle $ABC$. Then what is the value of $R + r$?
A. $2\sqrt 2 $
B. $3\sqrt 2 $
C. $7\sqrt 2 $
D. $\dfrac{9}{{\sqrt 2 }}$
Answer
163.5k+ views
Hint: First, use the formula of the perpendicular distance between a point and a line to find the length of the radius of the incircle. Then use the relation between the radius of the circumcircle and the incircle of an equilateral triangle, and find the radius of the circumcircle. In the end, add the values of the radius of the circumcircle and the incircle of an equilateral triangle to get the required answer.
Formula Used:
The perpendicular distance between a point $\left( {p,q} \right)$ and a line $ax + by + c = 0$ is:
$d = \left| {\dfrac{{ap + bq + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
The relation between the radius of the circumcircle and the incircle of an equilateral triangle is: $R = 2r$
Complete step by step solution:
Given: The origin is a centroid of an equilateral triangle $ABC$.
One of the sides of the equilateral triangle is along the straight line $x + y = 3$.
$R$ and $r$ be the radius of the circumcircle and the incircle respectively.

Image: An equilateral triangle ABC with a centroid (0, 0)
The perpendicular distance between the origin and a line $x + y = 3$ is the radius of incircle.
Now apply the formula of the perpendicular distance between a point and a line.
The length of radius of the incircle is,
$r = \left| {\dfrac{{0\left( 1 \right) + 0\left( 1 \right) - 3}}{{\sqrt {{1^2} + {1^2}} }}} \right|$
$ \Rightarrow r = \left| {\dfrac{{ - 3}}{{\sqrt 2 }}} \right|$
$ \Rightarrow r = \dfrac{3}{{\sqrt 2 }}$
We know that in an equilateral triangle, the length of the radius of the circumcircle is twice the length of the radius of the incircle.
So, $R = 2r$.
Substitute $r = \dfrac{3}{{\sqrt 2 }}$ in the above equation.
$R = 2\left( {\dfrac{3}{{\sqrt 2 }}} \right)$
$ \Rightarrow R = \dfrac{6}{{\sqrt 2 }}$
Therefore,
$R + r = \dfrac{6}{{\sqrt 2 }} + \dfrac{3}{{\sqrt 2 }}$
$ \Rightarrow R + r = \dfrac{9}{{\sqrt 2 }}$
Option ‘D’ is correct
Note: The distance between the orthocenter of a triangle and the side of the triangle is the radius of the incircle of the triangle. For an equilateral triangle, the radius of the circumcircle is the same as the diameter of the incircle of the triangle.
Formula Used:
The perpendicular distance between a point $\left( {p,q} \right)$ and a line $ax + by + c = 0$ is:
$d = \left| {\dfrac{{ap + bq + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
The relation between the radius of the circumcircle and the incircle of an equilateral triangle is: $R = 2r$
Complete step by step solution:
Given: The origin is a centroid of an equilateral triangle $ABC$.
One of the sides of the equilateral triangle is along the straight line $x + y = 3$.
$R$ and $r$ be the radius of the circumcircle and the incircle respectively.

Image: An equilateral triangle ABC with a centroid (0, 0)
The perpendicular distance between the origin and a line $x + y = 3$ is the radius of incircle.
Now apply the formula of the perpendicular distance between a point and a line.
The length of radius of the incircle is,
$r = \left| {\dfrac{{0\left( 1 \right) + 0\left( 1 \right) - 3}}{{\sqrt {{1^2} + {1^2}} }}} \right|$
$ \Rightarrow r = \left| {\dfrac{{ - 3}}{{\sqrt 2 }}} \right|$
$ \Rightarrow r = \dfrac{3}{{\sqrt 2 }}$
We know that in an equilateral triangle, the length of the radius of the circumcircle is twice the length of the radius of the incircle.
So, $R = 2r$.
Substitute $r = \dfrac{3}{{\sqrt 2 }}$ in the above equation.
$R = 2\left( {\dfrac{3}{{\sqrt 2 }}} \right)$
$ \Rightarrow R = \dfrac{6}{{\sqrt 2 }}$
Therefore,
$R + r = \dfrac{6}{{\sqrt 2 }} + \dfrac{3}{{\sqrt 2 }}$
$ \Rightarrow R + r = \dfrac{9}{{\sqrt 2 }}$
Option ‘D’ is correct
Note: The distance between the orthocenter of a triangle and the side of the triangle is the radius of the incircle of the triangle. For an equilateral triangle, the radius of the circumcircle is the same as the diameter of the incircle of the triangle.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
