
Let \[\overrightarrow a = \widehat i - \widehat j\], \[\overrightarrow b = \widehat i + \widehat j + \widehat k\] and \[\overrightarrow c \] be a vector such that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\], then find\[{\left| {\overrightarrow c } \right|^2} \]
Answer
232.8k+ views
Hint: From the question, we can see some hints where we can use some simple identities and formula which are used in vector properties such that vector and scalar products and the result will be found by using these identities by putting the known values that are given in the question. Suppose if we headed with substitution method, like taking unknow vector as \[\overrightarrow c = x\widehat i + y\widehat j + z\widehat k\] should lead us complication path. So, just think some tricks by use the given conditions which is lead us through the clarity way.
Formula used: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step solution: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step answer:
Given that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\]
First take \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\]. From this by using the identity we can write it as,
\[\begin{array}{c}\overrightarrow a \times \overrightarrow c + \overrightarrow b = \overrightarrow a \times \overrightarrow c = - \overrightarrow b \end{array}\]
Now, multiply by \[\overrightarrow a \] on both sides such that we get,
\[\left( \vec{a}\times \vec{c} \right)\times \vec{a}=-\vec{b}\times \vec{a}\]
\[\left( \vec{a}\cdot \vec{a} \right)\vec{c}-\left( \vec{c}\cdot \vec{a} \right)\vec{a}=\vec{a}\times \vec{b}\]
\[\left( \hat{i}-\hat{j} \right)\cdot \left( \hat{i}-\hat{j} \right)\vec{c}-\left( 4 \right)\left( \hat{i}-\hat{j} \right)=\vec{a}\times \vec{b}\]
\[\left( 1+1 \right)\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
\[2\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
Next, let us find \[\overrightarrow a \times \overrightarrow b \]
\[\overrightarrow a \times \overrightarrow b\] = $\begin{vmatrix}{\widehat i}&{\widehat j}&{\widehat k}\\1&{- 1}&0\\1&1&1 \end{vmatrix}$
\[= \widehat i\left( { - 1 - 0} \right) - \widehat j\left( {1 - 0} \right) + \widehat k\left( {1 + 1} \right)\]
\[= - \widehat i - \widehat j + 2\widehat k\]
Now from the equation (1.1), we have
\[2\overrightarrow c - 4\widehat i + 4\widehat j = - \widehat i - \widehat j + 2\widehat k\]
\[2\overrightarrow c = - \widehat i - \widehat j + 2\widehat k + 4\widehat i - 4\widehat j\]
\[2\overrightarrow c = 3\widehat i - 5\widehat j + 2\widehat k\]
\[\overrightarrow c = \dfrac{3}{2}\widehat i - \dfrac{5}{2}\widehat j + \dfrac{2}{2}\widehat k\]
This implies that,
\[\left| {\overrightarrow c } \right| = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( { - \dfrac{5}{2}} \right)}^2} + {{\left( 1 \right)}^2}}\]
\[= \sqrt {\dfrac{9}{4} + \dfrac{{25}}{4} + 1}\]
\[= \sqrt {\dfrac{{34}}{4} + 1}\]
\[= \sqrt {\dfrac{{38}}{4}}\]
\[\left| {\overrightarrow c } \right| = \sqrt {\dfrac{{19}}{2}}\]
Next, square on both sides:
\[{\left| {\overrightarrow c } \right|^2} = \dfrac{{19}}{2}\]
\[{\left| {\overrightarrow c } \right|^2} = 9.5\]
This is the required answer.
Note: We should don’t be confused about using the identities and properties of vector and should be careful in the signs of the terms as there may be a missing of plus and minus and calculations. So, just avoid the errors.
Formula used: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step solution: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step answer:
Given that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\]
First take \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\]. From this by using the identity we can write it as,
\[\begin{array}{c}\overrightarrow a \times \overrightarrow c + \overrightarrow b = \overrightarrow a \times \overrightarrow c = - \overrightarrow b \end{array}\]
Now, multiply by \[\overrightarrow a \] on both sides such that we get,
\[\left( \vec{a}\times \vec{c} \right)\times \vec{a}=-\vec{b}\times \vec{a}\]
\[\left( \vec{a}\cdot \vec{a} \right)\vec{c}-\left( \vec{c}\cdot \vec{a} \right)\vec{a}=\vec{a}\times \vec{b}\]
\[\left( \hat{i}-\hat{j} \right)\cdot \left( \hat{i}-\hat{j} \right)\vec{c}-\left( 4 \right)\left( \hat{i}-\hat{j} \right)=\vec{a}\times \vec{b}\]
\[\left( 1+1 \right)\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
\[2\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
Next, let us find \[\overrightarrow a \times \overrightarrow b \]
\[\overrightarrow a \times \overrightarrow b\] = $\begin{vmatrix}{\widehat i}&{\widehat j}&{\widehat k}\\1&{- 1}&0\\1&1&1 \end{vmatrix}$
\[= \widehat i\left( { - 1 - 0} \right) - \widehat j\left( {1 - 0} \right) + \widehat k\left( {1 + 1} \right)\]
\[= - \widehat i - \widehat j + 2\widehat k\]
Now from the equation (1.1), we have
\[2\overrightarrow c - 4\widehat i + 4\widehat j = - \widehat i - \widehat j + 2\widehat k\]
\[2\overrightarrow c = - \widehat i - \widehat j + 2\widehat k + 4\widehat i - 4\widehat j\]
\[2\overrightarrow c = 3\widehat i - 5\widehat j + 2\widehat k\]
\[\overrightarrow c = \dfrac{3}{2}\widehat i - \dfrac{5}{2}\widehat j + \dfrac{2}{2}\widehat k\]
This implies that,
\[\left| {\overrightarrow c } \right| = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( { - \dfrac{5}{2}} \right)}^2} + {{\left( 1 \right)}^2}}\]
\[= \sqrt {\dfrac{9}{4} + \dfrac{{25}}{4} + 1}\]
\[= \sqrt {\dfrac{{34}}{4} + 1}\]
\[= \sqrt {\dfrac{{38}}{4}}\]
\[\left| {\overrightarrow c } \right| = \sqrt {\dfrac{{19}}{2}}\]
Next, square on both sides:
\[{\left| {\overrightarrow c } \right|^2} = \dfrac{{19}}{2}\]
\[{\left| {\overrightarrow c } \right|^2} = 9.5\]
This is the required answer.
Note: We should don’t be confused about using the identities and properties of vector and should be careful in the signs of the terms as there may be a missing of plus and minus and calculations. So, just avoid the errors.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

