
Let \[\overrightarrow a = \widehat i - \widehat j\], \[\overrightarrow b = \widehat i + \widehat j + \widehat k\] and \[\overrightarrow c \] be a vector such that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\], then find\[{\left| {\overrightarrow c } \right|^2} \]
Answer
162k+ views
Hint: From the question, we can see some hints where we can use some simple identities and formula which are used in vector properties such that vector and scalar products and the result will be found by using these identities by putting the known values that are given in the question. Suppose if we headed with substitution method, like taking unknow vector as \[\overrightarrow c = x\widehat i + y\widehat j + z\widehat k\] should lead us complication path. So, just think some tricks by use the given conditions which is lead us through the clarity way.
Formula used: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step solution: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step answer:
Given that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\]
First take \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\]. From this by using the identity we can write it as,
\[\begin{array}{c}\overrightarrow a \times \overrightarrow c + \overrightarrow b = \overrightarrow a \times \overrightarrow c = - \overrightarrow b \end{array}\]
Now, multiply by \[\overrightarrow a \] on both sides such that we get,
\[\left( \vec{a}\times \vec{c} \right)\times \vec{a}=-\vec{b}\times \vec{a}\]
\[\left( \vec{a}\cdot \vec{a} \right)\vec{c}-\left( \vec{c}\cdot \vec{a} \right)\vec{a}=\vec{a}\times \vec{b}\]
\[\left( \hat{i}-\hat{j} \right)\cdot \left( \hat{i}-\hat{j} \right)\vec{c}-\left( 4 \right)\left( \hat{i}-\hat{j} \right)=\vec{a}\times \vec{b}\]
\[\left( 1+1 \right)\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
\[2\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
Next, let us find \[\overrightarrow a \times \overrightarrow b \]
\[\overrightarrow a \times \overrightarrow b\] = $\begin{vmatrix}{\widehat i}&{\widehat j}&{\widehat k}\\1&{- 1}&0\\1&1&1 \end{vmatrix}$
\[= \widehat i\left( { - 1 - 0} \right) - \widehat j\left( {1 - 0} \right) + \widehat k\left( {1 + 1} \right)\]
\[= - \widehat i - \widehat j + 2\widehat k\]
Now from the equation (1.1), we have
\[2\overrightarrow c - 4\widehat i + 4\widehat j = - \widehat i - \widehat j + 2\widehat k\]
\[2\overrightarrow c = - \widehat i - \widehat j + 2\widehat k + 4\widehat i - 4\widehat j\]
\[2\overrightarrow c = 3\widehat i - 5\widehat j + 2\widehat k\]
\[\overrightarrow c = \dfrac{3}{2}\widehat i - \dfrac{5}{2}\widehat j + \dfrac{2}{2}\widehat k\]
This implies that,
\[\left| {\overrightarrow c } \right| = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( { - \dfrac{5}{2}} \right)}^2} + {{\left( 1 \right)}^2}}\]
\[= \sqrt {\dfrac{9}{4} + \dfrac{{25}}{4} + 1}\]
\[= \sqrt {\dfrac{{34}}{4} + 1}\]
\[= \sqrt {\dfrac{{38}}{4}}\]
\[\left| {\overrightarrow c } \right| = \sqrt {\dfrac{{19}}{2}}\]
Next, square on both sides:
\[{\left| {\overrightarrow c } \right|^2} = \dfrac{{19}}{2}\]
\[{\left| {\overrightarrow c } \right|^2} = 9.5\]
This is the required answer.
Note: We should don’t be confused about using the identities and properties of vector and should be careful in the signs of the terms as there may be a missing of plus and minus and calculations. So, just avoid the errors.
Formula used: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step solution: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step answer:
Given that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\]
First take \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\]. From this by using the identity we can write it as,
\[\begin{array}{c}\overrightarrow a \times \overrightarrow c + \overrightarrow b = \overrightarrow a \times \overrightarrow c = - \overrightarrow b \end{array}\]
Now, multiply by \[\overrightarrow a \] on both sides such that we get,
\[\left( \vec{a}\times \vec{c} \right)\times \vec{a}=-\vec{b}\times \vec{a}\]
\[\left( \vec{a}\cdot \vec{a} \right)\vec{c}-\left( \vec{c}\cdot \vec{a} \right)\vec{a}=\vec{a}\times \vec{b}\]
\[\left( \hat{i}-\hat{j} \right)\cdot \left( \hat{i}-\hat{j} \right)\vec{c}-\left( 4 \right)\left( \hat{i}-\hat{j} \right)=\vec{a}\times \vec{b}\]
\[\left( 1+1 \right)\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
\[2\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
Next, let us find \[\overrightarrow a \times \overrightarrow b \]
\[\overrightarrow a \times \overrightarrow b\] = $\begin{vmatrix}{\widehat i}&{\widehat j}&{\widehat k}\\1&{- 1}&0\\1&1&1 \end{vmatrix}$
\[= \widehat i\left( { - 1 - 0} \right) - \widehat j\left( {1 - 0} \right) + \widehat k\left( {1 + 1} \right)\]
\[= - \widehat i - \widehat j + 2\widehat k\]
Now from the equation (1.1), we have
\[2\overrightarrow c - 4\widehat i + 4\widehat j = - \widehat i - \widehat j + 2\widehat k\]
\[2\overrightarrow c = - \widehat i - \widehat j + 2\widehat k + 4\widehat i - 4\widehat j\]
\[2\overrightarrow c = 3\widehat i - 5\widehat j + 2\widehat k\]
\[\overrightarrow c = \dfrac{3}{2}\widehat i - \dfrac{5}{2}\widehat j + \dfrac{2}{2}\widehat k\]
This implies that,
\[\left| {\overrightarrow c } \right| = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( { - \dfrac{5}{2}} \right)}^2} + {{\left( 1 \right)}^2}}\]
\[= \sqrt {\dfrac{9}{4} + \dfrac{{25}}{4} + 1}\]
\[= \sqrt {\dfrac{{34}}{4} + 1}\]
\[= \sqrt {\dfrac{{38}}{4}}\]
\[\left| {\overrightarrow c } \right| = \sqrt {\dfrac{{19}}{2}}\]
Next, square on both sides:
\[{\left| {\overrightarrow c } \right|^2} = \dfrac{{19}}{2}\]
\[{\left| {\overrightarrow c } \right|^2} = 9.5\]
This is the required answer.
Note: We should don’t be confused about using the identities and properties of vector and should be careful in the signs of the terms as there may be a missing of plus and minus and calculations. So, just avoid the errors.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
