
Let \[\overrightarrow a = \widehat i - \widehat j\], \[\overrightarrow b = \widehat i + \widehat j + \widehat k\] and \[\overrightarrow c \] be a vector such that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\], then find\[{\left| {\overrightarrow c } \right|^2} \]
Answer
219.3k+ views
Hint: From the question, we can see some hints where we can use some simple identities and formula which are used in vector properties such that vector and scalar products and the result will be found by using these identities by putting the known values that are given in the question. Suppose if we headed with substitution method, like taking unknow vector as \[\overrightarrow c = x\widehat i + y\widehat j + z\widehat k\] should lead us complication path. So, just think some tricks by use the given conditions which is lead us through the clarity way.
Formula used: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step solution: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step answer:
Given that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\]
First take \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\]. From this by using the identity we can write it as,
\[\begin{array}{c}\overrightarrow a \times \overrightarrow c + \overrightarrow b = \overrightarrow a \times \overrightarrow c = - \overrightarrow b \end{array}\]
Now, multiply by \[\overrightarrow a \] on both sides such that we get,
\[\left( \vec{a}\times \vec{c} \right)\times \vec{a}=-\vec{b}\times \vec{a}\]
\[\left( \vec{a}\cdot \vec{a} \right)\vec{c}-\left( \vec{c}\cdot \vec{a} \right)\vec{a}=\vec{a}\times \vec{b}\]
\[\left( \hat{i}-\hat{j} \right)\cdot \left( \hat{i}-\hat{j} \right)\vec{c}-\left( 4 \right)\left( \hat{i}-\hat{j} \right)=\vec{a}\times \vec{b}\]
\[\left( 1+1 \right)\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
\[2\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
Next, let us find \[\overrightarrow a \times \overrightarrow b \]
\[\overrightarrow a \times \overrightarrow b\] = $\begin{vmatrix}{\widehat i}&{\widehat j}&{\widehat k}\\1&{- 1}&0\\1&1&1 \end{vmatrix}$
\[= \widehat i\left( { - 1 - 0} \right) - \widehat j\left( {1 - 0} \right) + \widehat k\left( {1 + 1} \right)\]
\[= - \widehat i - \widehat j + 2\widehat k\]
Now from the equation (1.1), we have
\[2\overrightarrow c - 4\widehat i + 4\widehat j = - \widehat i - \widehat j + 2\widehat k\]
\[2\overrightarrow c = - \widehat i - \widehat j + 2\widehat k + 4\widehat i - 4\widehat j\]
\[2\overrightarrow c = 3\widehat i - 5\widehat j + 2\widehat k\]
\[\overrightarrow c = \dfrac{3}{2}\widehat i - \dfrac{5}{2}\widehat j + \dfrac{2}{2}\widehat k\]
This implies that,
\[\left| {\overrightarrow c } \right| = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( { - \dfrac{5}{2}} \right)}^2} + {{\left( 1 \right)}^2}}\]
\[= \sqrt {\dfrac{9}{4} + \dfrac{{25}}{4} + 1}\]
\[= \sqrt {\dfrac{{34}}{4} + 1}\]
\[= \sqrt {\dfrac{{38}}{4}}\]
\[\left| {\overrightarrow c } \right| = \sqrt {\dfrac{{19}}{2}}\]
Next, square on both sides:
\[{\left| {\overrightarrow c } \right|^2} = \dfrac{{19}}{2}\]
\[{\left| {\overrightarrow c } \right|^2} = 9.5\]
This is the required answer.
Note: We should don’t be confused about using the identities and properties of vector and should be careful in the signs of the terms as there may be a missing of plus and minus and calculations. So, just avoid the errors.
Formula used: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step solution: Since vector algebra is a very interesting subject we can solve the problems in this chapter very easily. We have to just know some tricks and identities, formulas to solve these types of problems. In the vector product, \[\overrightarrow a \times \overrightarrow b = - \overrightarrow b \times \overrightarrow a \] and in the scalar product, \[\overrightarrow a \cdot \overrightarrow b = \overrightarrow b \cdot \overrightarrow a \]
Next, \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left( {\overrightarrow a \cdot \overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow b \cdot \overrightarrow c } \right)\overrightarrow a \] and the magnitude of a vector is modulus of the vector.
For example, consider a vector \[\overrightarrow p = x\widehat i + y\widehat j + z\widehat k\] and its magnitude will be defined as
\[\left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]
Complete step by step answer:
Given that \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\] and \[\overrightarrow a \cdot \overrightarrow c = 4\]
First take \[\overrightarrow a \times \overrightarrow c + \overrightarrow b = 0\]. From this by using the identity we can write it as,
\[\begin{array}{c}\overrightarrow a \times \overrightarrow c + \overrightarrow b = \overrightarrow a \times \overrightarrow c = - \overrightarrow b \end{array}\]
Now, multiply by \[\overrightarrow a \] on both sides such that we get,
\[\left( \vec{a}\times \vec{c} \right)\times \vec{a}=-\vec{b}\times \vec{a}\]
\[\left( \vec{a}\cdot \vec{a} \right)\vec{c}-\left( \vec{c}\cdot \vec{a} \right)\vec{a}=\vec{a}\times \vec{b}\]
\[\left( \hat{i}-\hat{j} \right)\cdot \left( \hat{i}-\hat{j} \right)\vec{c}-\left( 4 \right)\left( \hat{i}-\hat{j} \right)=\vec{a}\times \vec{b}\]
\[\left( 1+1 \right)\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
\[2\vec{c}-4\hat{i}+4\hat{j}=\vec{a}\times \vec{b}\]
Next, let us find \[\overrightarrow a \times \overrightarrow b \]
\[\overrightarrow a \times \overrightarrow b\] = $\begin{vmatrix}{\widehat i}&{\widehat j}&{\widehat k}\\1&{- 1}&0\\1&1&1 \end{vmatrix}$
\[= \widehat i\left( { - 1 - 0} \right) - \widehat j\left( {1 - 0} \right) + \widehat k\left( {1 + 1} \right)\]
\[= - \widehat i - \widehat j + 2\widehat k\]
Now from the equation (1.1), we have
\[2\overrightarrow c - 4\widehat i + 4\widehat j = - \widehat i - \widehat j + 2\widehat k\]
\[2\overrightarrow c = - \widehat i - \widehat j + 2\widehat k + 4\widehat i - 4\widehat j\]
\[2\overrightarrow c = 3\widehat i - 5\widehat j + 2\widehat k\]
\[\overrightarrow c = \dfrac{3}{2}\widehat i - \dfrac{5}{2}\widehat j + \dfrac{2}{2}\widehat k\]
This implies that,
\[\left| {\overrightarrow c } \right| = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( { - \dfrac{5}{2}} \right)}^2} + {{\left( 1 \right)}^2}}\]
\[= \sqrt {\dfrac{9}{4} + \dfrac{{25}}{4} + 1}\]
\[= \sqrt {\dfrac{{34}}{4} + 1}\]
\[= \sqrt {\dfrac{{38}}{4}}\]
\[\left| {\overrightarrow c } \right| = \sqrt {\dfrac{{19}}{2}}\]
Next, square on both sides:
\[{\left| {\overrightarrow c } \right|^2} = \dfrac{{19}}{2}\]
\[{\left| {\overrightarrow c } \right|^2} = 9.5\]
This is the required answer.
Note: We should don’t be confused about using the identities and properties of vector and should be careful in the signs of the terms as there may be a missing of plus and minus and calculations. So, just avoid the errors.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

