Answer
Verified
81k+ views
Hint: Use the fact that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A. Hence determine the values of a, b and det(A). Hence verify which of the options are correct and which are incorrect.
Complete step-by-step answer:
We have
$M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$
We know that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A.
Hence, we have
$\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\det \left( M \right)\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
8-5a & 3\left( a-2 \right) & 2-a \\
0 & -2 & 0 \\
8\left( b-1 \right) & 6\left( 1-b \right) & 2\left( -2+y \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
\det \left( M \right) & 0 & 0 \\
0 & \det \left( M \right) & 0 \\
0 & 0 & \det \left( M \right) \\
\end{matrix} \right]$
Hence, we have
$\begin{align}
& 3\left( a-2 \right)=0\Rightarrow a=2 \\
& \det \left( M \right)=-2 \\
& 8\left( b-1 \right)=0\Rightarrow b=1 \\
\end{align}$
Checking option [a] We know that $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$ where n is the order of A.
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( {{M}^{2}} \right)}^{3-1}}=\det {{\left( {{M}^{2}} \right)}^{2}}$
We know that $\det \left( {{M}^{2}} \right)=\det {{\left( M \right)}^{2}}$
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( M \right)}^{4}}={{\left( -2 \right)}^{4}}=16$
Checking option [b]: We have a =2 and b= 1. Hence, we have a+b = 2+1 = 3
Checking option [c]:
We have $M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\ \ \ \ \left( i \right)$
Since $\det \left( M \right)\ne 0$, we have ${{M}^{-1}}$ exists.
Pre-multiplying equation (i) by ${{M}^{-1}}$, we get
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$
We know that ${{A}^{-1}}=\dfrac{1}{\det \left( A \right)}adj\left( A \right)$
Hence, we have
${{M}^{-1}}=\dfrac{1}{-2}\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
-1 \\
1 \\
\end{matrix} \right]$
Hence, we have
$\alpha =1,\beta =-1,\gamma =1$
Hence, we have
$\alpha +\beta +\gamma =1$
Checking option [d]:
We know that $Aadj\left( A \right)=\det \left( A \right)I$
Hence, we have
${{M}^{-1}}adj\left( {{M}^{-1}} \right)=\det \left( {{M}^{-1}} \right)I$
Pre-multiplying both sides by M, we get
$adj\left( {{M}^{-1}} \right)=\dfrac{1}{\det \left( M \right)}M=-\dfrac{M}{2}$
We know that $A{{A}^{-1}}=I$
Hence, we have
$adj\left( M \right)adj{{\left( M \right)}^{-1}}=I$
Pre-multiplying both sides by M, we get
$\begin{align}
& Madj\left( M \right)adj{{\left( M \right)}^{-1}}=M \\
& \det \left( M \right)Iadj{{\left( M \right)}^{-1}}=M \\
& \Rightarrow adj{{\left( M \right)}^{-1}}=\dfrac{M}{\det \left( M \right)}=-\dfrac{M}{2} \\
\end{align}$
Hence, we have
$adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-\dfrac{M}{2}-\dfrac{M}{2}=-M$
So, the correct answers are “Option b and d”.
Note: [1] The properties of adjoint of a matrix are very important in matrix algebra and students are advised to remember them. In particular the following two properties are very important
[a] $Aadj\left( A \right)=adj\left( A \right)A=\det \left( A \right)I$
[b] $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$
The calculations in this problem would have been very long and tedious if we had not used these two properties.
Complete step-by-step answer:
We have
$M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$
We know that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A.
Hence, we have
$\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\det \left( M \right)\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
8-5a & 3\left( a-2 \right) & 2-a \\
0 & -2 & 0 \\
8\left( b-1 \right) & 6\left( 1-b \right) & 2\left( -2+y \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
\det \left( M \right) & 0 & 0 \\
0 & \det \left( M \right) & 0 \\
0 & 0 & \det \left( M \right) \\
\end{matrix} \right]$
Hence, we have
$\begin{align}
& 3\left( a-2 \right)=0\Rightarrow a=2 \\
& \det \left( M \right)=-2 \\
& 8\left( b-1 \right)=0\Rightarrow b=1 \\
\end{align}$
Checking option [a] We know that $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$ where n is the order of A.
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( {{M}^{2}} \right)}^{3-1}}=\det {{\left( {{M}^{2}} \right)}^{2}}$
We know that $\det \left( {{M}^{2}} \right)=\det {{\left( M \right)}^{2}}$
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( M \right)}^{4}}={{\left( -2 \right)}^{4}}=16$
Checking option [b]: We have a =2 and b= 1. Hence, we have a+b = 2+1 = 3
Checking option [c]:
We have $M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\ \ \ \ \left( i \right)$
Since $\det \left( M \right)\ne 0$, we have ${{M}^{-1}}$ exists.
Pre-multiplying equation (i) by ${{M}^{-1}}$, we get
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$
We know that ${{A}^{-1}}=\dfrac{1}{\det \left( A \right)}adj\left( A \right)$
Hence, we have
${{M}^{-1}}=\dfrac{1}{-2}\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
-1 \\
1 \\
\end{matrix} \right]$
Hence, we have
$\alpha =1,\beta =-1,\gamma =1$
Hence, we have
$\alpha +\beta +\gamma =1$
Checking option [d]:
We know that $Aadj\left( A \right)=\det \left( A \right)I$
Hence, we have
${{M}^{-1}}adj\left( {{M}^{-1}} \right)=\det \left( {{M}^{-1}} \right)I$
Pre-multiplying both sides by M, we get
$adj\left( {{M}^{-1}} \right)=\dfrac{1}{\det \left( M \right)}M=-\dfrac{M}{2}$
We know that $A{{A}^{-1}}=I$
Hence, we have
$adj\left( M \right)adj{{\left( M \right)}^{-1}}=I$
Pre-multiplying both sides by M, we get
$\begin{align}
& Madj\left( M \right)adj{{\left( M \right)}^{-1}}=M \\
& \det \left( M \right)Iadj{{\left( M \right)}^{-1}}=M \\
& \Rightarrow adj{{\left( M \right)}^{-1}}=\dfrac{M}{\det \left( M \right)}=-\dfrac{M}{2} \\
\end{align}$
Hence, we have
$adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-\dfrac{M}{2}-\dfrac{M}{2}=-M$
So, the correct answers are “Option b and d”.
Note: [1] The properties of adjoint of a matrix are very important in matrix algebra and students are advised to remember them. In particular the following two properties are very important
[a] $Aadj\left( A \right)=adj\left( A \right)A=\det \left( A \right)I$
[b] $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$
The calculations in this problem would have been very long and tedious if we had not used these two properties.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
The area of a circle whose centre is left hk right class 10 maths JEE_Main
A parallel plate air condenser is connected with a class 12 physics JEE_MAIN
A fish is near the center of a spherical waterfilled class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main