Let $M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$ where a and b are real numbers.
Which of the following options is/are correct?
[a] $\det \left( adj\left( {{M}^{2}} \right) \right)=81$
[b] $a+b=3$
[c] If \[M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\], then $\alpha +\beta +\gamma =3$
[d] $adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-M$
Answer
Verified
118.5k+ views
Hint: Use the fact that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A. Hence determine the values of a, b and det(A). Hence verify which of the options are correct and which are incorrect.
Complete step-by-step answer:
We have
$M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$
We know that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A.
Hence, we have
$\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\det \left( M \right)\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
8-5a & 3\left( a-2 \right) & 2-a \\
0 & -2 & 0 \\
8\left( b-1 \right) & 6\left( 1-b \right) & 2\left( -2+y \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
\det \left( M \right) & 0 & 0 \\
0 & \det \left( M \right) & 0 \\
0 & 0 & \det \left( M \right) \\
\end{matrix} \right]$
Hence, we have
$\begin{align}
& 3\left( a-2 \right)=0\Rightarrow a=2 \\
& \det \left( M \right)=-2 \\
& 8\left( b-1 \right)=0\Rightarrow b=1 \\
\end{align}$
Checking option [a] We know that $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$ where n is the order of A.
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( {{M}^{2}} \right)}^{3-1}}=\det {{\left( {{M}^{2}} \right)}^{2}}$
We know that $\det \left( {{M}^{2}} \right)=\det {{\left( M \right)}^{2}}$
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( M \right)}^{4}}={{\left( -2 \right)}^{4}}=16$
Checking option [b]: We have a =2 and b= 1. Hence, we have a+b = 2+1 = 3
Checking option [c]:
We have $M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\ \ \ \ \left( i \right)$
Since $\det \left( M \right)\ne 0$, we have ${{M}^{-1}}$ exists.
Pre-multiplying equation (i) by ${{M}^{-1}}$, we get
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$
We know that ${{A}^{-1}}=\dfrac{1}{\det \left( A \right)}adj\left( A \right)$
Hence, we have
${{M}^{-1}}=\dfrac{1}{-2}\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
-1 \\
1 \\
\end{matrix} \right]$
Hence, we have
$\alpha =1,\beta =-1,\gamma =1$
Hence, we have
$\alpha +\beta +\gamma =1$
Checking option [d]:
We know that $Aadj\left( A \right)=\det \left( A \right)I$
Hence, we have
${{M}^{-1}}adj\left( {{M}^{-1}} \right)=\det \left( {{M}^{-1}} \right)I$
Pre-multiplying both sides by M, we get
$adj\left( {{M}^{-1}} \right)=\dfrac{1}{\det \left( M \right)}M=-\dfrac{M}{2}$
We know that $A{{A}^{-1}}=I$
Hence, we have
$adj\left( M \right)adj{{\left( M \right)}^{-1}}=I$
Pre-multiplying both sides by M, we get
$\begin{align}
& Madj\left( M \right)adj{{\left( M \right)}^{-1}}=M \\
& \det \left( M \right)Iadj{{\left( M \right)}^{-1}}=M \\
& \Rightarrow adj{{\left( M \right)}^{-1}}=\dfrac{M}{\det \left( M \right)}=-\dfrac{M}{2} \\
\end{align}$
Hence, we have
$adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-\dfrac{M}{2}-\dfrac{M}{2}=-M$
So, the correct answers are “Option b and d”.
Note: [1] The properties of adjoint of a matrix are very important in matrix algebra and students are advised to remember them. In particular the following two properties are very important
[a] $Aadj\left( A \right)=adj\left( A \right)A=\det \left( A \right)I$
[b] $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$
The calculations in this problem would have been very long and tedious if we had not used these two properties.
Complete step-by-step answer:
We have
$M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$
We know that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A.
Hence, we have
$\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\det \left( M \right)\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
8-5a & 3\left( a-2 \right) & 2-a \\
0 & -2 & 0 \\
8\left( b-1 \right) & 6\left( 1-b \right) & 2\left( -2+y \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
\det \left( M \right) & 0 & 0 \\
0 & \det \left( M \right) & 0 \\
0 & 0 & \det \left( M \right) \\
\end{matrix} \right]$
Hence, we have
$\begin{align}
& 3\left( a-2 \right)=0\Rightarrow a=2 \\
& \det \left( M \right)=-2 \\
& 8\left( b-1 \right)=0\Rightarrow b=1 \\
\end{align}$
Checking option [a] We know that $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$ where n is the order of A.
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( {{M}^{2}} \right)}^{3-1}}=\det {{\left( {{M}^{2}} \right)}^{2}}$
We know that $\det \left( {{M}^{2}} \right)=\det {{\left( M \right)}^{2}}$
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( M \right)}^{4}}={{\left( -2 \right)}^{4}}=16$
Checking option [b]: We have a =2 and b= 1. Hence, we have a+b = 2+1 = 3
Checking option [c]:
We have $M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\ \ \ \ \left( i \right)$
Since $\det \left( M \right)\ne 0$, we have ${{M}^{-1}}$ exists.
Pre-multiplying equation (i) by ${{M}^{-1}}$, we get
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$
We know that ${{A}^{-1}}=\dfrac{1}{\det \left( A \right)}adj\left( A \right)$
Hence, we have
${{M}^{-1}}=\dfrac{1}{-2}\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
-1 \\
1 \\
\end{matrix} \right]$
Hence, we have
$\alpha =1,\beta =-1,\gamma =1$
Hence, we have
$\alpha +\beta +\gamma =1$
Checking option [d]:
We know that $Aadj\left( A \right)=\det \left( A \right)I$
Hence, we have
${{M}^{-1}}adj\left( {{M}^{-1}} \right)=\det \left( {{M}^{-1}} \right)I$
Pre-multiplying both sides by M, we get
$adj\left( {{M}^{-1}} \right)=\dfrac{1}{\det \left( M \right)}M=-\dfrac{M}{2}$
We know that $A{{A}^{-1}}=I$
Hence, we have
$adj\left( M \right)adj{{\left( M \right)}^{-1}}=I$
Pre-multiplying both sides by M, we get
$\begin{align}
& Madj\left( M \right)adj{{\left( M \right)}^{-1}}=M \\
& \det \left( M \right)Iadj{{\left( M \right)}^{-1}}=M \\
& \Rightarrow adj{{\left( M \right)}^{-1}}=\dfrac{M}{\det \left( M \right)}=-\dfrac{M}{2} \\
\end{align}$
Hence, we have
$adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-\dfrac{M}{2}-\dfrac{M}{2}=-M$
So, the correct answers are “Option b and d”.
Note: [1] The properties of adjoint of a matrix are very important in matrix algebra and students are advised to remember them. In particular the following two properties are very important
[a] $Aadj\left( A \right)=adj\left( A \right)A=\det \left( A \right)I$
[b] $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$
The calculations in this problem would have been very long and tedious if we had not used these two properties.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
JEE Main 2023 (April 11th Shift 2) Maths Question Paper with Answer Key
Trending doubts
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Learn Chemistry Normality Formula With Example for JEE Main 2025
JEE Main Physics 2025: Self Inductance of A Solenoid
Amplitude Formula
Learn About Domestic Electric Circuit: JEE Main Physics 2025
Other Pages
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season
JEE Main Physics Question Paper PDF Download with Answer Key
JEE Main 2025 Question Paper PDFs with Solutions Free Download