
Let $M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$ where a and b are real numbers.
Which of the following options is/are correct?
[a] $\det \left( adj\left( {{M}^{2}} \right) \right)=81$
[b] $a+b=3$
[c] If \[M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\], then $\alpha +\beta +\gamma =3$
[d] $adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-M$
Answer
153.6k+ views
Hint: Use the fact that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A. Hence determine the values of a, b and det(A). Hence verify which of the options are correct and which are incorrect.
Complete step-by-step answer:
We have
$M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$
We know that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A.
Hence, we have
$\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\det \left( M \right)\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
8-5a & 3\left( a-2 \right) & 2-a \\
0 & -2 & 0 \\
8\left( b-1 \right) & 6\left( 1-b \right) & 2\left( -2+y \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
\det \left( M \right) & 0 & 0 \\
0 & \det \left( M \right) & 0 \\
0 & 0 & \det \left( M \right) \\
\end{matrix} \right]$
Hence, we have
$\begin{align}
& 3\left( a-2 \right)=0\Rightarrow a=2 \\
& \det \left( M \right)=-2 \\
& 8\left( b-1 \right)=0\Rightarrow b=1 \\
\end{align}$
Checking option [a] We know that $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$ where n is the order of A.
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( {{M}^{2}} \right)}^{3-1}}=\det {{\left( {{M}^{2}} \right)}^{2}}$
We know that $\det \left( {{M}^{2}} \right)=\det {{\left( M \right)}^{2}}$
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( M \right)}^{4}}={{\left( -2 \right)}^{4}}=16$
Checking option [b]: We have a =2 and b= 1. Hence, we have a+b = 2+1 = 3
Checking option [c]:
We have $M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\ \ \ \ \left( i \right)$
Since $\det \left( M \right)\ne 0$, we have ${{M}^{-1}}$ exists.
Pre-multiplying equation (i) by ${{M}^{-1}}$, we get
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$
We know that ${{A}^{-1}}=\dfrac{1}{\det \left( A \right)}adj\left( A \right)$
Hence, we have
${{M}^{-1}}=\dfrac{1}{-2}\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
-1 \\
1 \\
\end{matrix} \right]$
Hence, we have
$\alpha =1,\beta =-1,\gamma =1$
Hence, we have
$\alpha +\beta +\gamma =1$
Checking option [d]:
We know that $Aadj\left( A \right)=\det \left( A \right)I$
Hence, we have
${{M}^{-1}}adj\left( {{M}^{-1}} \right)=\det \left( {{M}^{-1}} \right)I$
Pre-multiplying both sides by M, we get
$adj\left( {{M}^{-1}} \right)=\dfrac{1}{\det \left( M \right)}M=-\dfrac{M}{2}$
We know that $A{{A}^{-1}}=I$
Hence, we have
$adj\left( M \right)adj{{\left( M \right)}^{-1}}=I$
Pre-multiplying both sides by M, we get
$\begin{align}
& Madj\left( M \right)adj{{\left( M \right)}^{-1}}=M \\
& \det \left( M \right)Iadj{{\left( M \right)}^{-1}}=M \\
& \Rightarrow adj{{\left( M \right)}^{-1}}=\dfrac{M}{\det \left( M \right)}=-\dfrac{M}{2} \\
\end{align}$
Hence, we have
$adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-\dfrac{M}{2}-\dfrac{M}{2}=-M$
So, the correct answers are “Option b and d”.
Note: [1] The properties of adjoint of a matrix are very important in matrix algebra and students are advised to remember them. In particular the following two properties are very important
[a] $Aadj\left( A \right)=adj\left( A \right)A=\det \left( A \right)I$
[b] $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$
The calculations in this problem would have been very long and tedious if we had not used these two properties.
Complete step-by-step answer:
We have
$M=\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]$ and $adj\left( M \right)=\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]$
We know that $Aadj\left( A \right)=\det \left( A \right)I$, where I is the identity matrix of same order as A.
Hence, we have
$\left[ \begin{matrix}
0 & 1 & a \\
1 & 2 & 3 \\
3 & b & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\det \left( M \right)\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
8-5a & 3\left( a-2 \right) & 2-a \\
0 & -2 & 0 \\
8\left( b-1 \right) & 6\left( 1-b \right) & 2\left( -2+y \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
\det \left( M \right) & 0 & 0 \\
0 & \det \left( M \right) & 0 \\
0 & 0 & \det \left( M \right) \\
\end{matrix} \right]$
Hence, we have
$\begin{align}
& 3\left( a-2 \right)=0\Rightarrow a=2 \\
& \det \left( M \right)=-2 \\
& 8\left( b-1 \right)=0\Rightarrow b=1 \\
\end{align}$
Checking option [a] We know that $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$ where n is the order of A.
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( {{M}^{2}} \right)}^{3-1}}=\det {{\left( {{M}^{2}} \right)}^{2}}$
We know that $\det \left( {{M}^{2}} \right)=\det {{\left( M \right)}^{2}}$
Hence, we have
$\det \left( adj\left( {{M}^{2}} \right) \right)=\det {{\left( M \right)}^{4}}={{\left( -2 \right)}^{4}}=16$
Checking option [b]: We have a =2 and b= 1. Hence, we have a+b = 2+1 = 3
Checking option [c]:
We have $M\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\ \ \ \ \left( i \right)$
Since $\det \left( M \right)\ne 0$, we have ${{M}^{-1}}$ exists.
Pre-multiplying equation (i) by ${{M}^{-1}}$, we get
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]={{M}^{-1}}\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$
We know that ${{A}^{-1}}=\dfrac{1}{\det \left( A \right)}adj\left( A \right)$
Hence, we have
${{M}^{-1}}=\dfrac{1}{-2}\left[ \begin{matrix}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]$
Hence, we have
$\left[ \begin{matrix}
\alpha \\
\beta \\
\gamma \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{1}{2} & \dfrac{-1}{2} & \dfrac{1}{2} \\
-4 & 3 & -1 \\
\dfrac{5}{2} & \dfrac{-3}{2} & \dfrac{1}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
-1 \\
1 \\
\end{matrix} \right]$
Hence, we have
$\alpha =1,\beta =-1,\gamma =1$
Hence, we have
$\alpha +\beta +\gamma =1$
Checking option [d]:
We know that $Aadj\left( A \right)=\det \left( A \right)I$
Hence, we have
${{M}^{-1}}adj\left( {{M}^{-1}} \right)=\det \left( {{M}^{-1}} \right)I$
Pre-multiplying both sides by M, we get
$adj\left( {{M}^{-1}} \right)=\dfrac{1}{\det \left( M \right)}M=-\dfrac{M}{2}$
We know that $A{{A}^{-1}}=I$
Hence, we have
$adj\left( M \right)adj{{\left( M \right)}^{-1}}=I$
Pre-multiplying both sides by M, we get
$\begin{align}
& Madj\left( M \right)adj{{\left( M \right)}^{-1}}=M \\
& \det \left( M \right)Iadj{{\left( M \right)}^{-1}}=M \\
& \Rightarrow adj{{\left( M \right)}^{-1}}=\dfrac{M}{\det \left( M \right)}=-\dfrac{M}{2} \\
\end{align}$
Hence, we have
$adj\left( {{M}^{-1}} \right)+adj{{\left( M \right)}^{-1}}=-\dfrac{M}{2}-\dfrac{M}{2}=-M$
So, the correct answers are “Option b and d”.
Note: [1] The properties of adjoint of a matrix are very important in matrix algebra and students are advised to remember them. In particular the following two properties are very important
[a] $Aadj\left( A \right)=adj\left( A \right)A=\det \left( A \right)I$
[b] $\det \left( adj\left( A \right) \right)=\det {{\left( A \right)}^{n-1}}$
The calculations in this problem would have been very long and tedious if we had not used these two properties.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
