
Let \[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{1 + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\], for \[a \in R\], \[\left| a \right| > 1\]. Then what are the possible values of \[a\] ?
A. 8
B. \[ - 9\]
C. \[ - 6\]
D. 7
Answer
216.3k+ views
Hint: First, simplify the numerator and denominator on the lefthand side of the given equation of a limit as the summation. Then convert the summations of the numerator and denominator into separate integrals. After that, solve both integrals and get the equation with variable \[a\]. In the end, solve the equation to reach the required answer.
Formula used:
\[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\]
\[{a^{m + n}} = {a^m}{a^n}\]
Complete step by step solution:
The given limit is \[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{1 + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\], where \[a \in R\], and \[\left| a \right| > 1\].
Let’s solve the left-hand side of the above equation of the limit.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sqrt[3]{1} + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the numerator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( r \right)}^{\dfrac{1}{3}}}} }}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Simplify \[{n^{\dfrac{7}{3}}}\] using the exponent property \[{a^{m + n}} = {a^m}{a^n}\]
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{n\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\dfrac{1}{n}\left( {\dfrac{{{n^2}}}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{{{n^2}}}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{{{n^2}}}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the denominator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{{{n^2}}}{{{{\left( {an + r} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Simplify the above equation.
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{1}{{{{\left( {a + \dfrac{r}{n}} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Now convert the above equation of a limit into an integral.
Let consider \[\dfrac{r}{n} = x\] and then in integration form \[\dfrac{1}{n}dr = dx\] and limits will be 0 and 1.
\[\dfrac{{\int\limits_0^1 {{{\left( x \right)}^{\dfrac{1}{3}}}dx} }}{{\int\limits_0^1 {\dfrac{1}{{{{(a + x)}^2}}}dx} }} = 54\]
Now integrate the integrals with respect to the variable \[x\] .
Apply the integration properties \[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\].
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{1}{3} + 1}}}}{{\dfrac{1}{3} + 1}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Simplify the above equation.
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{4}{3}}}}}{{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ {{x^{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Now apply the upper and lower limits.
\[\dfrac{{\dfrac{3}{4}\left[ {{1^{\dfrac{4}{3}}} - 0} \right]}}{{\left[ {\dfrac{{ - 1}}{{a + 1}} - \dfrac{{ - 1}}{{a + 0}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ 1 \right]}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
Cross multiplies the above terms.
\[\dfrac{3}{{4 \times 54}} = \dfrac{1}{a} - \dfrac{1}{{a + 1}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{{a + 1 - a}}{{a\left( {a + 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{1}{{a\left( {a + 1} \right)}}\]
Cross multiplies the above terms.
\[{a^2} + a = 72\]
\[ \Rightarrow {a^2} + a - 72 = 0\]
Factorize the above equation.
\[{a^2} + 9a - 8a - 72 = 0\]
\[ \Rightarrow a\left( {a + 9} \right) - 8\left( {a + 9} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right)\left( {a - 8} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right) = 0\] or \[\left( {a - 8} \right) = 0\]
\[ \Rightarrow a = - 9\] or \[a = 8\]
Hence the correct options are A and B.
Note: Students often get confused about the integration of \[\int {\dfrac{1}{{{{(a + x)}^2}}}dx} \] .
Solve this integration by using the u-substitution method. Substitute \[a + x = u\] in the above integral and convert it as integral in terms of \[u\]. Then apply the rule \[\int {{u^n}du} = \dfrac{{{u^{n + 1}}}}{{n + 1}}\] with \[n = - 2\]. Solve the integral and resubstitute the value of \[u\] to get the value of the integral.
Formula used:
\[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\]
\[{a^{m + n}} = {a^m}{a^n}\]
Complete step by step solution:
The given limit is \[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{1 + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\], where \[a \in R\], and \[\left| a \right| > 1\].
Let’s solve the left-hand side of the above equation of the limit.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sqrt[3]{1} + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the numerator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( r \right)}^{\dfrac{1}{3}}}} }}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Simplify \[{n^{\dfrac{7}{3}}}\] using the exponent property \[{a^{m + n}} = {a^m}{a^n}\]
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{n\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\dfrac{1}{n}\left( {\dfrac{{{n^2}}}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{{{n^2}}}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{{{n^2}}}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the denominator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{{{n^2}}}{{{{\left( {an + r} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Simplify the above equation.
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{1}{{{{\left( {a + \dfrac{r}{n}} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Now convert the above equation of a limit into an integral.
Let consider \[\dfrac{r}{n} = x\] and then in integration form \[\dfrac{1}{n}dr = dx\] and limits will be 0 and 1.
\[\dfrac{{\int\limits_0^1 {{{\left( x \right)}^{\dfrac{1}{3}}}dx} }}{{\int\limits_0^1 {\dfrac{1}{{{{(a + x)}^2}}}dx} }} = 54\]
Now integrate the integrals with respect to the variable \[x\] .
Apply the integration properties \[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\].
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{1}{3} + 1}}}}{{\dfrac{1}{3} + 1}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Simplify the above equation.
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{4}{3}}}}}{{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ {{x^{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Now apply the upper and lower limits.
\[\dfrac{{\dfrac{3}{4}\left[ {{1^{\dfrac{4}{3}}} - 0} \right]}}{{\left[ {\dfrac{{ - 1}}{{a + 1}} - \dfrac{{ - 1}}{{a + 0}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ 1 \right]}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
Cross multiplies the above terms.
\[\dfrac{3}{{4 \times 54}} = \dfrac{1}{a} - \dfrac{1}{{a + 1}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{{a + 1 - a}}{{a\left( {a + 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{1}{{a\left( {a + 1} \right)}}\]
Cross multiplies the above terms.
\[{a^2} + a = 72\]
\[ \Rightarrow {a^2} + a - 72 = 0\]
Factorize the above equation.
\[{a^2} + 9a - 8a - 72 = 0\]
\[ \Rightarrow a\left( {a + 9} \right) - 8\left( {a + 9} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right)\left( {a - 8} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right) = 0\] or \[\left( {a - 8} \right) = 0\]
\[ \Rightarrow a = - 9\] or \[a = 8\]
Hence the correct options are A and B.
Note: Students often get confused about the integration of \[\int {\dfrac{1}{{{{(a + x)}^2}}}dx} \] .
Solve this integration by using the u-substitution method. Substitute \[a + x = u\] in the above integral and convert it as integral in terms of \[u\]. Then apply the rule \[\int {{u^n}du} = \dfrac{{{u^{n + 1}}}}{{n + 1}}\] with \[n = - 2\]. Solve the integral and resubstitute the value of \[u\] to get the value of the integral.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
NCERT Solutions for Class 11 Maths Chapter Chapter 4 Complex Numbers And Quadratic Equations

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

