
Let \[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{1 + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\], for \[a \in R\], \[\left| a \right| > 1\]. Then what are the possible values of \[a\] ?
A. 8
B. \[ - 9\]
C. \[ - 6\]
D. 7
Answer
232.8k+ views
Hint: First, simplify the numerator and denominator on the lefthand side of the given equation of a limit as the summation. Then convert the summations of the numerator and denominator into separate integrals. After that, solve both integrals and get the equation with variable \[a\]. In the end, solve the equation to reach the required answer.
Formula used:
\[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\]
\[{a^{m + n}} = {a^m}{a^n}\]
Complete step by step solution:
The given limit is \[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{1 + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\], where \[a \in R\], and \[\left| a \right| > 1\].
Let’s solve the left-hand side of the above equation of the limit.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sqrt[3]{1} + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the numerator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( r \right)}^{\dfrac{1}{3}}}} }}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Simplify \[{n^{\dfrac{7}{3}}}\] using the exponent property \[{a^{m + n}} = {a^m}{a^n}\]
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{n\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\dfrac{1}{n}\left( {\dfrac{{{n^2}}}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{{{n^2}}}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{{{n^2}}}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the denominator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{{{n^2}}}{{{{\left( {an + r} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Simplify the above equation.
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{1}{{{{\left( {a + \dfrac{r}{n}} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Now convert the above equation of a limit into an integral.
Let consider \[\dfrac{r}{n} = x\] and then in integration form \[\dfrac{1}{n}dr = dx\] and limits will be 0 and 1.
\[\dfrac{{\int\limits_0^1 {{{\left( x \right)}^{\dfrac{1}{3}}}dx} }}{{\int\limits_0^1 {\dfrac{1}{{{{(a + x)}^2}}}dx} }} = 54\]
Now integrate the integrals with respect to the variable \[x\] .
Apply the integration properties \[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\].
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{1}{3} + 1}}}}{{\dfrac{1}{3} + 1}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Simplify the above equation.
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{4}{3}}}}}{{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ {{x^{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Now apply the upper and lower limits.
\[\dfrac{{\dfrac{3}{4}\left[ {{1^{\dfrac{4}{3}}} - 0} \right]}}{{\left[ {\dfrac{{ - 1}}{{a + 1}} - \dfrac{{ - 1}}{{a + 0}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ 1 \right]}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
Cross multiplies the above terms.
\[\dfrac{3}{{4 \times 54}} = \dfrac{1}{a} - \dfrac{1}{{a + 1}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{{a + 1 - a}}{{a\left( {a + 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{1}{{a\left( {a + 1} \right)}}\]
Cross multiplies the above terms.
\[{a^2} + a = 72\]
\[ \Rightarrow {a^2} + a - 72 = 0\]
Factorize the above equation.
\[{a^2} + 9a - 8a - 72 = 0\]
\[ \Rightarrow a\left( {a + 9} \right) - 8\left( {a + 9} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right)\left( {a - 8} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right) = 0\] or \[\left( {a - 8} \right) = 0\]
\[ \Rightarrow a = - 9\] or \[a = 8\]
Hence the correct options are A and B.
Note: Students often get confused about the integration of \[\int {\dfrac{1}{{{{(a + x)}^2}}}dx} \] .
Solve this integration by using the u-substitution method. Substitute \[a + x = u\] in the above integral and convert it as integral in terms of \[u\]. Then apply the rule \[\int {{u^n}du} = \dfrac{{{u^{n + 1}}}}{{n + 1}}\] with \[n = - 2\]. Solve the integral and resubstitute the value of \[u\] to get the value of the integral.
Formula used:
\[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\]
\[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\]
\[{a^{m + n}} = {a^m}{a^n}\]
Complete step by step solution:
The given limit is \[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{1 + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\], where \[a \in R\], and \[\left| a \right| > 1\].
Let’s solve the left-hand side of the above equation of the limit.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sqrt[3]{1} + \sqrt[3]{2} + ... + \sqrt[3]{n}}}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the numerator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( r \right)}^{\dfrac{1}{3}}}} }}{{{n^{\dfrac{7}{3}}}\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Simplify \[{n^{\dfrac{7}{3}}}\] using the exponent property \[{a^{m + n}} = {a^m}{a^n}\]
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{n\left( {\dfrac{1}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{1}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{1}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\dfrac{1}{n}\left( {\dfrac{{{n^2}}}{{{{\left( {an + 1} \right)}^2}}} + \dfrac{{{n^2}}}{{{{\left( {an + 2} \right)}^2}}} + ... + \dfrac{{{n^2}}}{{{{\left( {an + n} \right)}^2}}}} \right)}}} \right) = 54\]
Rewrite the denominator as the summation of \[n\] terms.
\[\mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{{{n^2}}}{{{{\left( {an + r} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Simplify the above equation.
\[ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{{\sum\limits_{r = 1}^n {{{\left( {\dfrac{r}{n}} \right)}^{\dfrac{1}{3}}}\dfrac{1}{n}} }}{{\sum\limits_{r = 1}^n {\dfrac{1}{{{{\left( {a + \dfrac{r}{n}} \right)}^2}}}\dfrac{1}{n}} }}} \right) = 54\]
Now convert the above equation of a limit into an integral.
Let consider \[\dfrac{r}{n} = x\] and then in integration form \[\dfrac{1}{n}dr = dx\] and limits will be 0 and 1.
\[\dfrac{{\int\limits_0^1 {{{\left( x \right)}^{\dfrac{1}{3}}}dx} }}{{\int\limits_0^1 {\dfrac{1}{{{{(a + x)}^2}}}dx} }} = 54\]
Now integrate the integrals with respect to the variable \[x\] .
Apply the integration properties \[\int\limits_a^b {{x^n}dx} = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]_a^b\] and \[\int\limits_a^b {\dfrac{1}{{{x^2}}}dx} = \left[ {\dfrac{{ - 1}}{x}} \right]_a^b\].
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{1}{3} + 1}}}}{{\dfrac{1}{3} + 1}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Simplify the above equation.
\[\dfrac{{\left[ {\dfrac{{{x^{\dfrac{4}{3}}}}}{{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ {{x^{\dfrac{4}{3}}}} \right]_0^1}}{{\left[ {\dfrac{{ - 1}}{{a + x}}} \right]_0^1}} = 54\]
Now apply the upper and lower limits.
\[\dfrac{{\dfrac{3}{4}\left[ {{1^{\dfrac{4}{3}}} - 0} \right]}}{{\left[ {\dfrac{{ - 1}}{{a + 1}} - \dfrac{{ - 1}}{{a + 0}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}\left[ 1 \right]}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
\[ \Rightarrow \dfrac{{\dfrac{3}{4}}}{{\left[ {\dfrac{1}{a} - \dfrac{1}{{a + 1}}} \right]}} = 54\]
Cross multiplies the above terms.
\[\dfrac{3}{{4 \times 54}} = \dfrac{1}{a} - \dfrac{1}{{a + 1}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{{a + 1 - a}}{{a\left( {a + 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{72}} = \dfrac{1}{{a\left( {a + 1} \right)}}\]
Cross multiplies the above terms.
\[{a^2} + a = 72\]
\[ \Rightarrow {a^2} + a - 72 = 0\]
Factorize the above equation.
\[{a^2} + 9a - 8a - 72 = 0\]
\[ \Rightarrow a\left( {a + 9} \right) - 8\left( {a + 9} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right)\left( {a - 8} \right) = 0\]
\[ \Rightarrow \left( {a + 9} \right) = 0\] or \[\left( {a - 8} \right) = 0\]
\[ \Rightarrow a = - 9\] or \[a = 8\]
Hence the correct options are A and B.
Note: Students often get confused about the integration of \[\int {\dfrac{1}{{{{(a + x)}^2}}}dx} \] .
Solve this integration by using the u-substitution method. Substitute \[a + x = u\] in the above integral and convert it as integral in terms of \[u\]. Then apply the rule \[\int {{u^n}du} = \dfrac{{{u^{n + 1}}}}{{n + 1}}\] with \[n = - 2\]. Solve the integral and resubstitute the value of \[u\] to get the value of the integral.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

