
Let $f\left( x \right) = {\sin ^{ - 1}}x$ and $g\left( x \right) = \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$. If $g\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} g\left( x \right)$, then the domain of the function $fog$ is
1. $( - \infty , - 2] \cup \left[ {\dfrac{{ - 4}}{3},\infty } \right]$
2. $( - \infty , - 1] \cup \left[ {2,\infty } \right)$
3. $( - \infty , - 2] \cup \left[ { - 1,\infty } \right]$
4. $( - \infty ,2] \cup \left[ {\dfrac{{ - 3}}{2},\infty } \right)$
Answer
232.8k+ views
Hint:The process of combining two or more functions into a single function is known as function composition. The output of one function inside the parenthesis becomes the input of the outside function in the function composition. The range is the set of possible values for the function. To solve this question, use the range of $f\left( x \right)$.
Formula Used:
$fog = f\left( {g\left( x \right)} \right)$
Complete step by step Solution:
$f\left( x \right) = {\sin ^{ - 1}}x$and $g\left( x \right) = \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
Here, $g\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} g\left( x \right)$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 2x + x - 2}}{{2{x^2} - 4x + 3x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{x\left( {x - 2} \right) + 1\left( {x - 2} \right)}}{{2x\left( {x - 2} \right) + 3\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}}$
$ = \dfrac{3}{7}$
As we know that, Domain of $fog$ is ${\sin ^{ - 1}}\left( {g\left( x \right)} \right)$
$ \Rightarrow \left| {g\left( x \right)} \right| \leqslant 1$ because the range of $\sin x$ is $\left[ { - 1,1} \right]$
Since $\left| {g\left( x \right)} \right| \leqslant 1$
$\therefore - 1 \leqslant g\left( x \right) \leqslant 1$
$ - 1 \leqslant \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$ \Rightarrow \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \geqslant - 1,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} + 1 \geqslant 0,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} - 1 \leqslant 0$
$\dfrac{{\left( {x + 1} \right) + \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \geqslant 0,\dfrac{{\left( {x + 1} \right) - \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \leqslant 0$
$3x + 4 \geqslant 0, - x - 2 \leqslant 0$
$x \geqslant \dfrac{{ - 4}}{3},x \leqslant - 2$
$x \in \left[ {\dfrac{{ - 4}}{3},\infty } \right),x \in \left( { - \infty , - 2} \right]$
$ \Rightarrow x \in \left( { - \infty , - 2} \right] \cup \left[ {\dfrac{{ - 4}}{3},\infty } \right)$
Hence, the correct option is 1.
Note:The key concept involved in solving this problem is a good knowledge of the domain. Students must remember that a function's domain is the set of numbers that can be entered into a given function. Basically, the set of $x - $ values that you can put into any of the given equations or functions.
Formula Used:
$fog = f\left( {g\left( x \right)} \right)$
Complete step by step Solution:
$f\left( x \right) = {\sin ^{ - 1}}x$and $g\left( x \right) = \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
Here, $g\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} g\left( x \right)$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 2x + x - 2}}{{2{x^2} - 4x + 3x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{x\left( {x - 2} \right) + 1\left( {x - 2} \right)}}{{2x\left( {x - 2} \right) + 3\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}}$
$ = \dfrac{3}{7}$
As we know that, Domain of $fog$ is ${\sin ^{ - 1}}\left( {g\left( x \right)} \right)$
$ \Rightarrow \left| {g\left( x \right)} \right| \leqslant 1$ because the range of $\sin x$ is $\left[ { - 1,1} \right]$
Since $\left| {g\left( x \right)} \right| \leqslant 1$
$\therefore - 1 \leqslant g\left( x \right) \leqslant 1$
$ - 1 \leqslant \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$ \Rightarrow \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \geqslant - 1,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} + 1 \geqslant 0,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} - 1 \leqslant 0$
$\dfrac{{\left( {x + 1} \right) + \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \geqslant 0,\dfrac{{\left( {x + 1} \right) - \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \leqslant 0$
$3x + 4 \geqslant 0, - x - 2 \leqslant 0$
$x \geqslant \dfrac{{ - 4}}{3},x \leqslant - 2$
$x \in \left[ {\dfrac{{ - 4}}{3},\infty } \right),x \in \left( { - \infty , - 2} \right]$
$ \Rightarrow x \in \left( { - \infty , - 2} \right] \cup \left[ {\dfrac{{ - 4}}{3},\infty } \right)$
Hence, the correct option is 1.
Note:The key concept involved in solving this problem is a good knowledge of the domain. Students must remember that a function's domain is the set of numbers that can be entered into a given function. Basically, the set of $x - $ values that you can put into any of the given equations or functions.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

