
Let $f\left( x \right) = {\sin ^{ - 1}}x$ and $g\left( x \right) = \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$. If $g\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} g\left( x \right)$, then the domain of the function $fog$ is
1. $( - \infty , - 2] \cup \left[ {\dfrac{{ - 4}}{3},\infty } \right]$
2. $( - \infty , - 1] \cup \left[ {2,\infty } \right)$
3. $( - \infty , - 2] \cup \left[ { - 1,\infty } \right]$
4. $( - \infty ,2] \cup \left[ {\dfrac{{ - 3}}{2},\infty } \right)$
Answer
218.7k+ views
Hint:The process of combining two or more functions into a single function is known as function composition. The output of one function inside the parenthesis becomes the input of the outside function in the function composition. The range is the set of possible values for the function. To solve this question, use the range of $f\left( x \right)$.
Formula Used:
$fog = f\left( {g\left( x \right)} \right)$
Complete step by step Solution:
$f\left( x \right) = {\sin ^{ - 1}}x$and $g\left( x \right) = \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
Here, $g\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} g\left( x \right)$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 2x + x - 2}}{{2{x^2} - 4x + 3x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{x\left( {x - 2} \right) + 1\left( {x - 2} \right)}}{{2x\left( {x - 2} \right) + 3\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}}$
$ = \dfrac{3}{7}$
As we know that, Domain of $fog$ is ${\sin ^{ - 1}}\left( {g\left( x \right)} \right)$
$ \Rightarrow \left| {g\left( x \right)} \right| \leqslant 1$ because the range of $\sin x$ is $\left[ { - 1,1} \right]$
Since $\left| {g\left( x \right)} \right| \leqslant 1$
$\therefore - 1 \leqslant g\left( x \right) \leqslant 1$
$ - 1 \leqslant \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$ \Rightarrow \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \geqslant - 1,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} + 1 \geqslant 0,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} - 1 \leqslant 0$
$\dfrac{{\left( {x + 1} \right) + \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \geqslant 0,\dfrac{{\left( {x + 1} \right) - \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \leqslant 0$
$3x + 4 \geqslant 0, - x - 2 \leqslant 0$
$x \geqslant \dfrac{{ - 4}}{3},x \leqslant - 2$
$x \in \left[ {\dfrac{{ - 4}}{3},\infty } \right),x \in \left( { - \infty , - 2} \right]$
$ \Rightarrow x \in \left( { - \infty , - 2} \right] \cup \left[ {\dfrac{{ - 4}}{3},\infty } \right)$
Hence, the correct option is 1.
Note:The key concept involved in solving this problem is a good knowledge of the domain. Students must remember that a function's domain is the set of numbers that can be entered into a given function. Basically, the set of $x - $ values that you can put into any of the given equations or functions.
Formula Used:
$fog = f\left( {g\left( x \right)} \right)$
Complete step by step Solution:
$f\left( x \right) = {\sin ^{ - 1}}x$and $g\left( x \right) = \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
Here, $g\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} g\left( x \right)$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 2x + x - 2}}{{2{x^2} - 4x + 3x - 6}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{x\left( {x - 2} \right) + 1\left( {x - 2} \right)}}{{2x\left( {x - 2} \right) + 3\left( {x - 2} \right)}}$
$ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}}$
$ = \dfrac{3}{7}$
As we know that, Domain of $fog$ is ${\sin ^{ - 1}}\left( {g\left( x \right)} \right)$
$ \Rightarrow \left| {g\left( x \right)} \right| \leqslant 1$ because the range of $\sin x$ is $\left[ { - 1,1} \right]$
Since $\left| {g\left( x \right)} \right| \leqslant 1$
$\therefore - 1 \leqslant g\left( x \right) \leqslant 1$
$ - 1 \leqslant \dfrac{{{x^2} - x - 2}}{{2{x^2} - x - 6}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {2x + 3} \right)\left( {x - 2} \right)}} \leqslant 1$
$ - 1 \leqslant \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$ \Rightarrow \dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \geqslant - 1,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} \leqslant 1$
$\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} + 1 \geqslant 0,\dfrac{{\left( {x + 1} \right)}}{{\left( {2x + 3} \right)}} - 1 \leqslant 0$
$\dfrac{{\left( {x + 1} \right) + \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \geqslant 0,\dfrac{{\left( {x + 1} \right) - \left( {2x + 3} \right)}}{{\left( {2x + 3} \right)}} \leqslant 0$
$3x + 4 \geqslant 0, - x - 2 \leqslant 0$
$x \geqslant \dfrac{{ - 4}}{3},x \leqslant - 2$
$x \in \left[ {\dfrac{{ - 4}}{3},\infty } \right),x \in \left( { - \infty , - 2} \right]$
$ \Rightarrow x \in \left( { - \infty , - 2} \right] \cup \left[ {\dfrac{{ - 4}}{3},\infty } \right)$
Hence, the correct option is 1.
Note:The key concept involved in solving this problem is a good knowledge of the domain. Students must remember that a function's domain is the set of numbers that can be entered into a given function. Basically, the set of $x - $ values that you can put into any of the given equations or functions.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

