
Let ${{f}_{1}}\text{ }:\text{ }R\text{ }\to R,{{f}_{2}}\text{ }:\left( -\pi /2,\pi /2 \right)\to R,\text{ }{{f}_{2}}\text{ }:\text{ }\left( -1,\text{ }{{e}^{\dfrac{_{\pi }}{2}}}-2 \right)\to R$ and
${{f}_{4}}\text{ }:\text{ }R\to ~R\ $ be functions defined by\[\]
(i) ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$\[\]
(ii) ${{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.$ where the inverse trigonometric function ${{\tan }^{-1}}x$ assumes values $\left( -\pi /2,\pi /2 \right)$ . \[\]
(iii) $ {{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]$ where, for $ t\in ~R,\text{ }\left[ t \right]$ denotes the greatest integer less than or equal to is $t$\[\]
(iv) ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$\[\]
List-I
P. The function ${{f}_{1}}$\[\]
Q. The function ${{f}_{2}}$\[\]
R. The function ${{f}_{3}}$\[\]
S. The function ${{f}_{4}}$\[\]
List-II:\[\]
1. NOT continuous at $x=0$\[\]
2. Continuous at $x=0$ and NOT differentiable at $x=0$
3. Differentiable at $x=0$ and its derivative is NOT continuous at $x=0$.\[\]
4. Differentiable at $x=0$ its derivative is continuous at $x=0$.\[\]
Choose the correct option:\[\]
A.$P\to 2,Q\to 3,R\to 1,S\to 4$\[\]
B. $P\to 4,Q\to 1,R\to 2,S\to 3$\[\]
C. $P\to 4,Q\to 2,R\to 1,S\to 3$\[\]
D. $P\to 2,Q\to 1,R\to 4,S\to 3$\[\]
Answer
154.5k+ views
Hint: Use the definition of continuity and differentiability at any point on the basis of limits. Calculate the left hand limit, the right hand limit , the left hand derivative and right hand derivative of all the functions to reach the correct result.\[\]
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Complete step-by-step answer:
We know that if a function $f\left( x \right)$ is continuous at any point $x=a$ then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at $x=a$. In symbols,
\[\begin{align}
& \text{LHL}=\text{RHL=}f\left( a \right) \\
& \Rightarrow \underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=f\left( a \right) \\
\end{align}\]
The function $f\left( x \right)$ is differentiable at $x=a$ if and only if $f\left( x \right)$ is continuous and Left hand derivative (LHD)=Right Hand Derivative
\[\begin{align}
& \text{LHD}=\text{RHD} \\
& \Rightarrow \underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( h \right)}{h} \\
\end{align}\]
(i) The first function is given by ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$. Testing for continuity at $x=0$,
\[\text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,(\sqrt{1-{{e}^{-{{x}^{2}}}}})=\text{RHL}=f\left( 0 \right)\]
So ${{f}_{1}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{-h}=-1 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin (\sqrt{1-{{e}^{-{{h}^{2}}}}})}{h}=1 \\
\end{align}\]
So ${{f}_{1}}$ is not differentiable at $x=0$. So $P\to 2$\[\]
(ii) The first function is given by\[{{f}_{2}}\left( x \right)=\left\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\
1,\text{if }x=0 \\
\end{matrix} \right.\]. Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{-\sin \left( -h \right)}{{{\tan }^{-}}\left( -h \right)}=-1 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x}=\dfrac{\sin \left( h \right)}{{{\tan }^{-}}\left( h \right)}=1 \\
\end{align}\]
As LHL and RHL are not same , ${{f}_{2}}$ is not continuous at $x=0$. So $Q\to 2$.\[\]
(iii) The third function is given by \[{{f}_{3}}\left( x \right)=\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]\] . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \sin \left( {{\log }_{e}}\left( x\text{ }+\text{ }2 \right) \right) \right]=0 \\
& {{f}_{3}}\left( 0 \right)=\left[ \sin \left( {{\log }_{e}}\left( \text{0 }+\text{ }2 \right) \right) \right]=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{-h }+\text{ }2 \right) \right) \right]}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left[ \sin \left( {{\log }_{e}}\left( \text{h }+\text{ }2 \right) \right) \right]}{h}=0 \\
\end{align}\]
So ${{f}_{3}}$ is differentiable at $x=0$ and also ${{f}_{3}}^{'}\left( x \right)$ is differentiable in neighbourhood differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is continuous at $x=0$. So $R\to 4$ \[\]
(iv) The last function is given by ${{f}_{4}}\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\
0 & ,x=0 \\
\end{matrix} \right.$ . Testing for continuity at $x=0$,
\[\begin{align}
& \text{LHL}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=0 \\
& \text{RHL}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)==0 \\
& {{f}_{3}}\left( 0 \right)=0 \\
\end{align}\]
So ${{f}_{3}}$ is continuous at $x=0$. Testing for differentiability at $x=0$,
\[\begin{align}
& \text{LHD}=\underset{h\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( -\dfrac{1}{h} \right)}{-h}=0 \\
& \text{RHD}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{h}^{2}}\sin \left( \dfrac{1}{h} \right)}{h}=0 \\
\end{align}\]
So ${{f}_{4}}$ is differentiable at $x=0$ and also ${{f}_{4}}^{'}\left( 0 \right)$ is not differentiable everywhere in the neighborhood of differentiable $x=0$. So ${{f}_{3}}^{'}\left( x \right)$ is not differentiable at $x=0$. So $R\to 4$ \[\]
So, the correct answer is “Option D”.
Note: We need to be careful of calculation and substitution which will lead us to the correct result. We need to take care of the negative and positive signs while finding left and right hand derivatives because they are going to be critical if the modulus function is involved.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
