
When $KMn{O_4}$is titrated against ferrous ammonium sulphate in acidic medium then the equivalent mass of $KMn{O_4}$will be:
A. $\dfrac{{Molecular{\text{ mass}}}}{{10}}$
B. $\dfrac{{Molecular{\text{ mass}}}}{5}$
C. $\dfrac{{Molecular{\text{ mass}}}}{3}$
D. $\dfrac{{Molecular{\text{ mass}}}}{2}$
Answer
155.1k+ views
Hint: Equivalent mass of a substance (oxidant or reductant) is equal to the molecular mass divided by number of electrons lost or gained by one molecule of the substance in redox reaction.
Complete step by step answer:
Potassium permanganate is a strong oxidizing agent in acidic medium. Ferrous ammonium sulphate is a double salt known as Mohr’s salt.
In this titration, potassium permanganate acts as an oxidizing agent and Mohr’s salt acts as a reducing agent. So, the reaction between potassium permanganate and Mohr’s salt is a redox reaction. In this redox reaction, ferrous ions from Mohr’s salt get oxidised. Manganese present in potassium permanganate( pink coloured ) which is in$ + 7$oxidation state gets reduced to colourless $M{n^{ + 2}}$state.
The chemical reaction and the molecular chemical equation is given below:
Reduction half reaction: Potassium permanganate ($KMn{O_4}$) reacts with sulphuric acid and produces nascent oxygen.
$2KMn{O_4} + 3{H_2}S{O_4}\xrightarrow{{}}{K_2}S{O_4} + 2MnS{O_4} + 3{H_2}O + 5\left[ O \right]$
In ionic form the reaction can be written as,
${\text{MnO}}_{\text{4}}^{{\text{2 - }}}$+${\text{8}}{{\text{H}}^{\text{ + }}} + {\text{5}}{{\text{e}}^{\text{ - }}}$$ \to $${\text{M}}{{\text{n}}^{{\text{2 + }}}}$+ ${\text{4}}{{\text{H}}_{\text{2}}}{\text{O}}$
Oxidation half reaction is written as,
$F{e^{2 + }} \to F{e^{3 + }} + {e^ - }$
The overall reaction in ionic form can be written as,
$Mn{O_4}^ - + 8{H^ + } + 5F{e^{ + 2}}\xrightarrow{{}}M{n^{ + 2}} + 5F{e^{ + 3}} + 4{H_2}O$
The reaction in normal form with all the compounds oxidised and reduced is written as follows,
\[2KMN{O_4} + 10FeS{O_4}{\left( {N{H_4}} \right)_2}S{O_4} \cdot 6{H_2}O \to {K_2}S{O_4} + 2MnS{O_4} + 5F{e_2}{\left( {S{O_4}} \right)_3} + 10{\left( {N{H_4}} \right)_2}S{O_4} + 68{H_2}O\]
The above reaction is studied in volumetric analysis called Titration.
The n – factor of $KMn{O_4}$is $5$because it gains $5$ electrons in the reaction.
By using the formula,
Equivalent weight of oxidizing agent $ = \dfrac{{Molecular{\text{ mass}}}}{{n - factor}}$
$\therefore $Equivalent weight of $KMn{O_4}\left( {O.A} \right) = \dfrac{{Molecular{\text{ mass}}}}{5}$
Hence, the correct option is (B).
Additional information: This titration is based upon oxidation – reduction titrations. When potassium permanganate solution is titrated against Ferrous ammonium sulphate in the presence of acidic medium then $KMn{O_4}$is oxidised $F{e^{ + 2}}$to $F{e^{ + 3}}$and itself reduces $M{n^{ + 7}}$to $M{n^{ + 2}}$
Note:
Potassium permanganate $\left( {KMn{O_4}} \right)$acts as an oxidizing agent in acidic, alkaline and neutral medium. In the above reaction, acidic medium is necessary in order to prevent precipitation of manganese oxide. $KMn{O_4}$acts as a self-indicator and the above titration is called permanganate titration.
Complete step by step answer:
Potassium permanganate is a strong oxidizing agent in acidic medium. Ferrous ammonium sulphate is a double salt known as Mohr’s salt.
In this titration, potassium permanganate acts as an oxidizing agent and Mohr’s salt acts as a reducing agent. So, the reaction between potassium permanganate and Mohr’s salt is a redox reaction. In this redox reaction, ferrous ions from Mohr’s salt get oxidised. Manganese present in potassium permanganate( pink coloured ) which is in$ + 7$oxidation state gets reduced to colourless $M{n^{ + 2}}$state.
The chemical reaction and the molecular chemical equation is given below:
Reduction half reaction: Potassium permanganate ($KMn{O_4}$) reacts with sulphuric acid and produces nascent oxygen.
$2KMn{O_4} + 3{H_2}S{O_4}\xrightarrow{{}}{K_2}S{O_4} + 2MnS{O_4} + 3{H_2}O + 5\left[ O \right]$
In ionic form the reaction can be written as,
${\text{MnO}}_{\text{4}}^{{\text{2 - }}}$+${\text{8}}{{\text{H}}^{\text{ + }}} + {\text{5}}{{\text{e}}^{\text{ - }}}$$ \to $${\text{M}}{{\text{n}}^{{\text{2 + }}}}$+ ${\text{4}}{{\text{H}}_{\text{2}}}{\text{O}}$
Oxidation half reaction is written as,
$F{e^{2 + }} \to F{e^{3 + }} + {e^ - }$
The overall reaction in ionic form can be written as,
$Mn{O_4}^ - + 8{H^ + } + 5F{e^{ + 2}}\xrightarrow{{}}M{n^{ + 2}} + 5F{e^{ + 3}} + 4{H_2}O$
The reaction in normal form with all the compounds oxidised and reduced is written as follows,
\[2KMN{O_4} + 10FeS{O_4}{\left( {N{H_4}} \right)_2}S{O_4} \cdot 6{H_2}O \to {K_2}S{O_4} + 2MnS{O_4} + 5F{e_2}{\left( {S{O_4}} \right)_3} + 10{\left( {N{H_4}} \right)_2}S{O_4} + 68{H_2}O\]
The above reaction is studied in volumetric analysis called Titration.
The n – factor of $KMn{O_4}$is $5$because it gains $5$ electrons in the reaction.
By using the formula,
Equivalent weight of oxidizing agent $ = \dfrac{{Molecular{\text{ mass}}}}{{n - factor}}$
$\therefore $Equivalent weight of $KMn{O_4}\left( {O.A} \right) = \dfrac{{Molecular{\text{ mass}}}}{5}$
Hence, the correct option is (B).
Additional information: This titration is based upon oxidation – reduction titrations. When potassium permanganate solution is titrated against Ferrous ammonium sulphate in the presence of acidic medium then $KMn{O_4}$is oxidised $F{e^{ + 2}}$to $F{e^{ + 3}}$and itself reduces $M{n^{ + 7}}$to $M{n^{ + 2}}$
Note:
Potassium permanganate $\left( {KMn{O_4}} \right)$acts as an oxidizing agent in acidic, alkaline and neutral medium. In the above reaction, acidic medium is necessary in order to prevent precipitation of manganese oxide. $KMn{O_4}$acts as a self-indicator and the above titration is called permanganate titration.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NH4NO3 and NH4NO2 on heating decomposes in to A NO2 class 11 chemistry JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced 2025 Notes

Electrical Field of Charged Spherical Shell - JEE
