
Isothermal bulk modulus of an ideal gas at pressure ‘P’ is:
A) $P$.
B) $\gamma P$
C) $\dfrac{P}{2}$.
D) $\dfrac{P}{R}$
Answer
233.1k+ views
Hint: Bulk modulus is the measure of the compression of any substance. The bulk modulus is the ratio of infinite pressure increase to the volume of the substance. The reciprocal of the bulk modulus is known as compressibility.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Formula used:
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Complete step by step solution:
It is asked in the problem about the isothermal bulk modulus of an ideal gas at pressure ‘P’.
The formula of the ideal gas equation is given by,
$ \Rightarrow PV = nRT$
Where pressure is P, the volume V, the number of moles is n, the universal gas constant is R and the temperature is T.
Now differentiating the ideal gas equation we get,
$ \Rightarrow \left( {P\Delta V} \right) + \left( {V\Delta P} \right) = 0$
Here it is noted that the$\Delta T = 0$, as the temperature is constant.
$ \Rightarrow \dfrac{{\Delta V}}{V} = - \dfrac{{\Delta P}}{P}$
The isothermal bulk modulus is equal to,
$ \Rightarrow {B_{isothermal}} = - \dfrac{{\Delta P}}{{\left( {\dfrac{{\Delta V}}{V}} \right)}} = P$
So the isothermal bulk modulus with pressure P is equal to P.
The correct answer for this problem is option A.
Additional information: The bulk modulus is represented by the B or K. Mathematically bulk modulus is equal to $B = - V\dfrac{{dP}}{{dV}}$ where pressure is P and volume is V. The isothermal bulk modulus is the bulk modulus of the when temperature is constant.
Note: The isothermal bulk modulus is defined as the ratio of the change in the pressure to the fractional change in the volume at constant temperature. The derivation of the ideal gas gives the isothermal bulk modulus of the material.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

