
$\int\limits_0^\pi {\left[ {\cot x} \right]} dx$where [.] denotes the greatest integer function, is equal to
$
{\text{A}}{\text{. }}\dfrac{\pi }{2} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. - 1}} \\
{\text{D}}{\text{. - }}\dfrac{\pi }{2} \\
$
Answer
216.6k+ views
Hint: To solve this question we have to understand property of greater integer function like: $
\left[ x \right] + \left[ { - x} \right] = 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
Now we have to consider cot function on which x it gives integer value and on which other value and by doing this we can proceed further in the question.
Complete step-by-step answer:
In order to use the property,
$
\left[ x \right] + \left[ { - x} \right] = - 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
We need to apply the below property of integers first-
$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $
This gives us:
$
\int\limits_0^\pi {\left[ {\cot x} \right]dx} = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} \\
\int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
This shows:
$
I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} \\
I = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
Adding the two integrals-
$
2I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} + \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
$
Now in the interval $0 - \pi $ cot(x) is not an integer so, from the property of greatest integer function we get,
$
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
2I = \int_0^\pi { - 1.dx} \\
2I = - \left( {\pi - 0} \right) \\
2I = - \pi \\
I = \dfrac{{ - \pi }}{2} \\
$
The correct option is- D.
Note: Whenever we get this type of question the key concept of solving is we have to care more about negative values because on taking greater integers some students confuse. And we have to remember properties of definite integration like $\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $.
\left[ x \right] + \left[ { - x} \right] = 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
Now we have to consider cot function on which x it gives integer value and on which other value and by doing this we can proceed further in the question.
Complete step-by-step answer:
In order to use the property,
$
\left[ x \right] + \left[ { - x} \right] = - 1,x \notin I \\
\left[ x \right] + \left[ { - x} \right] = 0,x \in I \\
$
We need to apply the below property of integers first-
$\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $
This gives us:
$
\int\limits_0^\pi {\left[ {\cot x} \right]dx} = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} \\
\int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
This shows:
$
I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} \\
I = \int\limits_0^\pi {\left[ {\cot \left( {\pi - x} \right)} \right]dx} = \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
$
Adding the two integrals-
$
2I = \int\limits_0^\pi {\left[ {\cot x} \right]dx} + \int\limits_0^\pi {\left[ { - \cot x} \right]dx} \\
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
$
Now in the interval $0 - \pi $ cot(x) is not an integer so, from the property of greatest integer function we get,
$
2I = \int\limits_0^\pi {\left( {\left[ {\cot x} \right] + \left[ { - \cot x} \right]} \right)dx} \\
2I = \int_0^\pi { - 1.dx} \\
2I = - \left( {\pi - 0} \right) \\
2I = - \pi \\
I = \dfrac{{ - \pi }}{2} \\
$
The correct option is- D.
Note: Whenever we get this type of question the key concept of solving is we have to care more about negative values because on taking greater integers some students confuse. And we have to remember properties of definite integration like $\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {b - a - x} \right)dx} $.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

