
Integrate the given function $x{{\sin }^{-1}}x$?
Answer
207.6k+ views
Hint: We have multiplication of two functions involved in $x{{\sin }^{-1}}x$. To integrate $x{{\sin }^{-1}}x$, we use integration by parts by taking ${{\sin }^{-1}}x$ as the function outside of the integral. Once we have done the by parts, we make the changes in the denominator to get the value of all the integrals involved in this calculation. We make the necessary reductions to get the required result.
Complete step-by-step solution:
Given that we have function $x{{\sin }^{-1}}x$ and we need to integrate that given function.
So, we need to find the value of $\int{x{{\sin }^{-1}}xdx}$.
To solve the problem, we need to use the result of integration by parts. We know that integration by parts is to be done when a combination of two or more functions are multiplied to each other inside the integral.
We know that integration of the function fg is defined as $\int{fgdx=f\int{gdx}-\int{\left( \left( \dfrac{df}{dx} \right).\int{gdx} \right)}dx}$.
Let us take $f\left( x \right)={{\sin }^{-1}}\left( x \right)$ and g(x) = x.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}x\int{xdx} \right)-\int{\left( \left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx} \right).\int{xdx} \right)}dx$.
We know that $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}\left( x \right).\dfrac{{{x}^{2}}}{2} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}.\dfrac{{{x}^{2}}}{2} \right)}dx$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\left( a+b \right)dx=\int{adx+\int{bdx}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\sqrt{1-{{x}^{2}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\sqrt{1-{{x}^{2}}}dx=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x+C}$ and $\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx={{\sin }^{-1}}x}+C$.
So, we have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x \right)-\dfrac{1}{2}\times \left( {{\sin }^{-1}}x \right)+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{1}{4}{{\sin }^{-1}}x-\dfrac{1}{2}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}-\dfrac{1}{4}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
We got the value of $\int{x{{\sin }^{-1}}xdx}$ as $\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
$\therefore$ The integral $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
Note: Whenever we see the integration problem involving inverse trigonometric functions, we use integrations by parts to get the integration. We always take inverse functions as ‘f’ for doing by parts as they cannot be integrated directly. While calculating the integral by parts, we need to make sure that no signs are gone wrong.
Complete step-by-step solution:
Given that we have function $x{{\sin }^{-1}}x$ and we need to integrate that given function.
So, we need to find the value of $\int{x{{\sin }^{-1}}xdx}$.
To solve the problem, we need to use the result of integration by parts. We know that integration by parts is to be done when a combination of two or more functions are multiplied to each other inside the integral.
We know that integration of the function fg is defined as $\int{fgdx=f\int{gdx}-\int{\left( \left( \dfrac{df}{dx} \right).\int{gdx} \right)}dx}$.
Let us take $f\left( x \right)={{\sin }^{-1}}\left( x \right)$ and g(x) = x.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}x\int{xdx} \right)-\int{\left( \left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx} \right).\int{xdx} \right)}dx$.
We know that $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}$ and $\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}\left( x \right).\dfrac{{{x}^{2}}}{2} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}.\dfrac{{{x}^{2}}}{2} \right)}dx$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\left( a+b \right)dx=\int{adx+\int{bdx}}}$.
We have got $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\sqrt{1-{{x}^{2}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right)$.
We know that $\int{\sqrt{1-{{x}^{2}}}dx=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x+C}$ and $\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx={{\sin }^{-1}}x}+C$.
So, we have $\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x \right)-\dfrac{1}{2}\times \left( {{\sin }^{-1}}x \right)+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{1}{4}{{\sin }^{-1}}x-\dfrac{1}{2}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}-\dfrac{1}{4}{{\sin }^{-1}}x+C$.
We have $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
We got the value of $\int{x{{\sin }^{-1}}xdx}$ as $\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
$\therefore$ The integral $\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C$.
Note: Whenever we see the integration problem involving inverse trigonometric functions, we use integrations by parts to get the integration. We always take inverse functions as ‘f’ for doing by parts as they cannot be integrated directly. While calculating the integral by parts, we need to make sure that no signs are gone wrong.
Recently Updated Pages
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Main 2022 (July 28th Shift 1) Physics Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 2) Physics Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

