
$\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx = } $ (for some arbitrary constant)
A. $\dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
B. $\dfrac{1}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
C. $\dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
D. $\dfrac{1}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
Answer
218.1k+ views
Hint: The given integral contains trigonometric terms in both the numerator and the denominator, so first convert the expression into a simpler expression using substitution, whose integral can be easily evaluated.
Complete step by step answer:
The given integral is $\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} $
Let $\sec x + \tan x = z$
Differentiating both sides with respect to $x$ , we see that :
$\sec x\tan x + {\sec ^2}xdx = dz$
$
\Rightarrow \sec x(\sec x + \tan x)dx = dz \\
\Rightarrow \sec xdx = \dfrac{{dz}}{z} \\
$
We know that according to a trigonometric property -
$
{\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x - \tan x)(\sec x + \tan x) = 1 \\
\Rightarrow \sec x - \tan x = \dfrac{1}{z} \\
$
On adding the obtained expressions $\sec x + \tan x$ and $\sec x - \tan x$, we get :
$
\sec x + \tan x + \sec x - \tan x = z + \dfrac{1}{z} \\
\sec x = \dfrac{1}{2}(z + \dfrac{1}{z}) \\
$
Substituting the obtained values of $\sec xdx$ , $\sec x$ and $\sec x + \tan x$ in the given integral, we get :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}\int {\dfrac{{{z^2} + 1}}{{{z^{\frac{{13}}{2}}}}}dz} \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}[\int {\dfrac{1}{{{z^{\frac{9}{2}}}}}dz + } \int {\dfrac{1}{{{z^{\frac{{13}}{2}}}}}dz} ] \\
$
Now, we will apply the formula of integration of ${x^n}$ , that is, $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $ . Thus, we get the integral of the above simplified expression as :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}(\dfrac{{ - 2}}{{7{z^{\frac{7}{2}}}}} + \dfrac{{ - 2}}{{11{z^{\frac{{11}}{2}}}}}) + C \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{{ - 1}}{{{z^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{z^2}}}) + C \\
$
Now, put the value $z = \sec x + \tan x$ in the above equation, we get :
$
\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{{(\sec x + \tan x)}^2}}}) + C \\
\Rightarrow \int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C \\
$
The correct option is option (C).
Additional information:
The integrals that contain multiple trigonometric functions are known as trigonometric integrals. (A discipline of mathematics that deals with certain angle functions and how to use them in computations is trigonometry. In trigonometry, there are six functions of an angle that are often utilized.)
Note:
In mathematics, an integral is a numerical number equal to the area under the graph of a function for some interval (definite integral) or a new function whose derivative is the original function (indefinite integral). While solving this kind of integral problems, select the part you are going to substitute such that the expression gets simpler and contains lesser number of terms and is easy to integrate. To solve trigonometric integrals, substitute the trigonometric function by some algebraic expression.
Complete step by step answer:
The given integral is $\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} $
Let $\sec x + \tan x = z$
Differentiating both sides with respect to $x$ , we see that :
$\sec x\tan x + {\sec ^2}xdx = dz$
$
\Rightarrow \sec x(\sec x + \tan x)dx = dz \\
\Rightarrow \sec xdx = \dfrac{{dz}}{z} \\
$
We know that according to a trigonometric property -
$
{\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x - \tan x)(\sec x + \tan x) = 1 \\
\Rightarrow \sec x - \tan x = \dfrac{1}{z} \\
$
On adding the obtained expressions $\sec x + \tan x$ and $\sec x - \tan x$, we get :
$
\sec x + \tan x + \sec x - \tan x = z + \dfrac{1}{z} \\
\sec x = \dfrac{1}{2}(z + \dfrac{1}{z}) \\
$
Substituting the obtained values of $\sec xdx$ , $\sec x$ and $\sec x + \tan x$ in the given integral, we get :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}\int {\dfrac{{{z^2} + 1}}{{{z^{\frac{{13}}{2}}}}}dz} \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}[\int {\dfrac{1}{{{z^{\frac{9}{2}}}}}dz + } \int {\dfrac{1}{{{z^{\frac{{13}}{2}}}}}dz} ] \\
$
Now, we will apply the formula of integration of ${x^n}$ , that is, $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $ . Thus, we get the integral of the above simplified expression as :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}(\dfrac{{ - 2}}{{7{z^{\frac{7}{2}}}}} + \dfrac{{ - 2}}{{11{z^{\frac{{11}}{2}}}}}) + C \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{{ - 1}}{{{z^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{z^2}}}) + C \\
$
Now, put the value $z = \sec x + \tan x$ in the above equation, we get :
$
\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{{(\sec x + \tan x)}^2}}}) + C \\
\Rightarrow \int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C \\
$
The correct option is option (C).
Additional information:
The integrals that contain multiple trigonometric functions are known as trigonometric integrals. (A discipline of mathematics that deals with certain angle functions and how to use them in computations is trigonometry. In trigonometry, there are six functions of an angle that are often utilized.)
Note:
In mathematics, an integral is a numerical number equal to the area under the graph of a function for some interval (definite integral) or a new function whose derivative is the original function (indefinite integral). While solving this kind of integral problems, select the part you are going to substitute such that the expression gets simpler and contains lesser number of terms and is easy to integrate. To solve trigonometric integrals, substitute the trigonometric function by some algebraic expression.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

