
$\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx = } $ (for some arbitrary constant)
A. $\dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
B. $\dfrac{1}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
C. $\dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
D. $\dfrac{1}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
Answer
161.1k+ views
Hint: The given integral contains trigonometric terms in both the numerator and the denominator, so first convert the expression into a simpler expression using substitution, whose integral can be easily evaluated.
Complete step by step answer:
The given integral is $\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} $
Let $\sec x + \tan x = z$
Differentiating both sides with respect to $x$ , we see that :
$\sec x\tan x + {\sec ^2}xdx = dz$
$
\Rightarrow \sec x(\sec x + \tan x)dx = dz \\
\Rightarrow \sec xdx = \dfrac{{dz}}{z} \\
$
We know that according to a trigonometric property -
$
{\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x - \tan x)(\sec x + \tan x) = 1 \\
\Rightarrow \sec x - \tan x = \dfrac{1}{z} \\
$
On adding the obtained expressions $\sec x + \tan x$ and $\sec x - \tan x$, we get :
$
\sec x + \tan x + \sec x - \tan x = z + \dfrac{1}{z} \\
\sec x = \dfrac{1}{2}(z + \dfrac{1}{z}) \\
$
Substituting the obtained values of $\sec xdx$ , $\sec x$ and $\sec x + \tan x$ in the given integral, we get :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}\int {\dfrac{{{z^2} + 1}}{{{z^{\frac{{13}}{2}}}}}dz} \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}[\int {\dfrac{1}{{{z^{\frac{9}{2}}}}}dz + } \int {\dfrac{1}{{{z^{\frac{{13}}{2}}}}}dz} ] \\
$
Now, we will apply the formula of integration of ${x^n}$ , that is, $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $ . Thus, we get the integral of the above simplified expression as :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}(\dfrac{{ - 2}}{{7{z^{\frac{7}{2}}}}} + \dfrac{{ - 2}}{{11{z^{\frac{{11}}{2}}}}}) + C \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{{ - 1}}{{{z^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{z^2}}}) + C \\
$
Now, put the value $z = \sec x + \tan x$ in the above equation, we get :
$
\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{{(\sec x + \tan x)}^2}}}) + C \\
\Rightarrow \int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C \\
$
The correct option is option (C).
Additional information:
The integrals that contain multiple trigonometric functions are known as trigonometric integrals. (A discipline of mathematics that deals with certain angle functions and how to use them in computations is trigonometry. In trigonometry, there are six functions of an angle that are often utilized.)
Note:
In mathematics, an integral is a numerical number equal to the area under the graph of a function for some interval (definite integral) or a new function whose derivative is the original function (indefinite integral). While solving this kind of integral problems, select the part you are going to substitute such that the expression gets simpler and contains lesser number of terms and is easy to integrate. To solve trigonometric integrals, substitute the trigonometric function by some algebraic expression.
Complete step by step answer:
The given integral is $\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} $
Let $\sec x + \tan x = z$
Differentiating both sides with respect to $x$ , we see that :
$\sec x\tan x + {\sec ^2}xdx = dz$
$
\Rightarrow \sec x(\sec x + \tan x)dx = dz \\
\Rightarrow \sec xdx = \dfrac{{dz}}{z} \\
$
We know that according to a trigonometric property -
$
{\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x - \tan x)(\sec x + \tan x) = 1 \\
\Rightarrow \sec x - \tan x = \dfrac{1}{z} \\
$
On adding the obtained expressions $\sec x + \tan x$ and $\sec x - \tan x$, we get :
$
\sec x + \tan x + \sec x - \tan x = z + \dfrac{1}{z} \\
\sec x = \dfrac{1}{2}(z + \dfrac{1}{z}) \\
$
Substituting the obtained values of $\sec xdx$ , $\sec x$ and $\sec x + \tan x$ in the given integral, we get :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}\int {\dfrac{{{z^2} + 1}}{{{z^{\frac{{13}}{2}}}}}dz} \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}[\int {\dfrac{1}{{{z^{\frac{9}{2}}}}}dz + } \int {\dfrac{1}{{{z^{\frac{{13}}{2}}}}}dz} ] \\
$
Now, we will apply the formula of integration of ${x^n}$ , that is, $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $ . Thus, we get the integral of the above simplified expression as :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}(\dfrac{{ - 2}}{{7{z^{\frac{7}{2}}}}} + \dfrac{{ - 2}}{{11{z^{\frac{{11}}{2}}}}}) + C \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{{ - 1}}{{{z^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{z^2}}}) + C \\
$
Now, put the value $z = \sec x + \tan x$ in the above equation, we get :
$
\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{{(\sec x + \tan x)}^2}}}) + C \\
\Rightarrow \int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C \\
$
The correct option is option (C).
Additional information:
The integrals that contain multiple trigonometric functions are known as trigonometric integrals. (A discipline of mathematics that deals with certain angle functions and how to use them in computations is trigonometry. In trigonometry, there are six functions of an angle that are often utilized.)
Note:
In mathematics, an integral is a numerical number equal to the area under the graph of a function for some interval (definite integral) or a new function whose derivative is the original function (indefinite integral). While solving this kind of integral problems, select the part you are going to substitute such that the expression gets simpler and contains lesser number of terms and is easy to integrate. To solve trigonometric integrals, substitute the trigonometric function by some algebraic expression.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
