
In YDSE, the amplitude of intensity variation of the two sources is found to be 5% of the average intensity. The ratio of the intensities of two interfering sources is
$\left( A \right)2564$
$\left( B \right)1089$
$\left( C \right)1600$
$\left( D \right)800$
Answer
233.1k+ views
Hint:YDSE (Young’s double slit experiment) shows both energy and matter show both wave and particle characteristics. Apply the relation between the maximum intensities and minimum intensities of the two-sources used in Young’s double slit experiment. From the equation we can ratio between the intensities of two interfering sources.
Formula used:
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Where ${I_1}$ and ${I_{_2}}$ are the two intensities.
Complete step by step solution:
Two coherent sources of lights placed at a small distance apart are used in Young’s double slit experiment. Usually only magnitudes greater than wavelength of light is used. Young’s double slit experiment helps in understanding the wave theory of light. Commonly used coherent sources in the modern-day experiments is Laser. Young’s double slit experiment firmly establishes that light behaves as a particle and wave.
Now lets us use the formula
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Now in the question they have mentioned that the amplitude of intensity variation of two sources is found to be 5% of the average intensity.
Let us assume the average intensity $I$ to be 100. Then ${I_{\max }}$ will be $5\% $ more than the average intensity $I$. Then ${I_{\max }} = 105$ units and ${I_{\min }}$ will be $5\% $ less than the average intensity $I$. ${I_{\min }} = 95$ units.
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
$\dfrac{{105}}{{95}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
We will the value of $\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} $is $40$
Hence$\dfrac{{{I_1}}}{{{I_2}}} = \left( {\dfrac{{{{\left( {40} \right)}^2}}}{{{{\left( 1 \right)}^2}}}} \right)$
$\dfrac{{{I_1}}}{{{I_2}}} = 1600$
Hence option (C) is the right option.
Note: Later they conducted Young’s double slit experiment using electrons and the pattern generated a similar result as light. It behaves both as a particle and wave. Young’s double slit experiment shows both these characteristics prominently.
Formula used:
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Where ${I_1}$ and ${I_{_2}}$ are the two intensities.
Complete step by step solution:
Two coherent sources of lights placed at a small distance apart are used in Young’s double slit experiment. Usually only magnitudes greater than wavelength of light is used. Young’s double slit experiment helps in understanding the wave theory of light. Commonly used coherent sources in the modern-day experiments is Laser. Young’s double slit experiment firmly establishes that light behaves as a particle and wave.
Now lets us use the formula
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Now in the question they have mentioned that the amplitude of intensity variation of two sources is found to be 5% of the average intensity.
Let us assume the average intensity $I$ to be 100. Then ${I_{\max }}$ will be $5\% $ more than the average intensity $I$. Then ${I_{\max }} = 105$ units and ${I_{\min }}$ will be $5\% $ less than the average intensity $I$. ${I_{\min }} = 95$ units.
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
$\dfrac{{105}}{{95}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
We will the value of $\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} $is $40$
Hence$\dfrac{{{I_1}}}{{{I_2}}} = \left( {\dfrac{{{{\left( {40} \right)}^2}}}{{{{\left( 1 \right)}^2}}}} \right)$
$\dfrac{{{I_1}}}{{{I_2}}} = 1600$
Hence option (C) is the right option.
Note: Later they conducted Young’s double slit experiment using electrons and the pattern generated a similar result as light. It behaves both as a particle and wave. Young’s double slit experiment shows both these characteristics prominently.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

Understanding Collisions: Types and Examples for Students

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

Highest T20 Scores in Cricket: Top Records & Stats 2025

