
In YDSE, the amplitude of intensity variation of the two sources is found to be 5% of the average intensity. The ratio of the intensities of two interfering sources is
$\left( A \right)2564$
$\left( B \right)1089$
$\left( C \right)1600$
$\left( D \right)800$
Answer
218.7k+ views
Hint:YDSE (Young’s double slit experiment) shows both energy and matter show both wave and particle characteristics. Apply the relation between the maximum intensities and minimum intensities of the two-sources used in Young’s double slit experiment. From the equation we can ratio between the intensities of two interfering sources.
Formula used:
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Where ${I_1}$ and ${I_{_2}}$ are the two intensities.
Complete step by step solution:
Two coherent sources of lights placed at a small distance apart are used in Young’s double slit experiment. Usually only magnitudes greater than wavelength of light is used. Young’s double slit experiment helps in understanding the wave theory of light. Commonly used coherent sources in the modern-day experiments is Laser. Young’s double slit experiment firmly establishes that light behaves as a particle and wave.
Now lets us use the formula
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Now in the question they have mentioned that the amplitude of intensity variation of two sources is found to be 5% of the average intensity.
Let us assume the average intensity $I$ to be 100. Then ${I_{\max }}$ will be $5\% $ more than the average intensity $I$. Then ${I_{\max }} = 105$ units and ${I_{\min }}$ will be $5\% $ less than the average intensity $I$. ${I_{\min }} = 95$ units.
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
$\dfrac{{105}}{{95}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
We will the value of $\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} $is $40$
Hence$\dfrac{{{I_1}}}{{{I_2}}} = \left( {\dfrac{{{{\left( {40} \right)}^2}}}{{{{\left( 1 \right)}^2}}}} \right)$
$\dfrac{{{I_1}}}{{{I_2}}} = 1600$
Hence option (C) is the right option.
Note: Later they conducted Young’s double slit experiment using electrons and the pattern generated a similar result as light. It behaves both as a particle and wave. Young’s double slit experiment shows both these characteristics prominently.
Formula used:
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Where ${I_1}$ and ${I_{_2}}$ are the two intensities.
Complete step by step solution:
Two coherent sources of lights placed at a small distance apart are used in Young’s double slit experiment. Usually only magnitudes greater than wavelength of light is used. Young’s double slit experiment helps in understanding the wave theory of light. Commonly used coherent sources in the modern-day experiments is Laser. Young’s double slit experiment firmly establishes that light behaves as a particle and wave.
Now lets us use the formula
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
Now in the question they have mentioned that the amplitude of intensity variation of two sources is found to be 5% of the average intensity.
Let us assume the average intensity $I$ to be 100. Then ${I_{\max }}$ will be $5\% $ more than the average intensity $I$. Then ${I_{\max }} = 105$ units and ${I_{\min }}$ will be $5\% $ less than the average intensity $I$. ${I_{\min }} = 95$ units.
$\dfrac{{{I_{\max }}}}{{{I_{\min }}}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
$\dfrac{{105}}{{95}} = {\dfrac{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} + 1} \right)}}{{{{\left( {\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} - 1} \right)}^2}}}^2}$
We will the value of $\sqrt {\dfrac{{{I_1}}}{{{I_2}}}} $is $40$
Hence$\dfrac{{{I_1}}}{{{I_2}}} = \left( {\dfrac{{{{\left( {40} \right)}^2}}}{{{{\left( 1 \right)}^2}}}} \right)$
$\dfrac{{{I_1}}}{{{I_2}}} = 1600$
Hence option (C) is the right option.
Note: Later they conducted Young’s double slit experiment using electrons and the pattern generated a similar result as light. It behaves both as a particle and wave. Young’s double slit experiment shows both these characteristics prominently.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

