Answer
Verified
85.2k+ views
Hint: In order to solve this question you have to know the concept of pulley and tension in thread. A pulley is a simple machine that redirects force. Tension is the force that is transmitted through a string, rope, cable, or wire when it is pulled tight by forces acting from opposite ends.
Complete step by step solution:
In this question it is given that ${M_1} > {M_2}$, so the tension in the string connecting the block and surface is given by
${T_{BC}} = ({M_1} - {M_2})g$
It is also given in the question that the string BC is burnt, then this tension disappears and the tension in the spring becomes
${T_s} = {M_1}g$
The spring also gets elongated.
Now, the tension in the string connected to A and B is given by
${T_{AB}} = {M_1}g$
Hence, the resultant force on A becomes zero because the tension in string is balanced by spring tension.
Hence, the net force exerted on the block B which is upward in direction is given by
${F_B} = ({M_1} - {M_2})g$
So, the initial acceleration of the block B is given by
${u_B} = \dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$
Thus, the initial acceleration of mass ${M_1}$ is zero
And the initial acceleration of mass ${M_2}$ is $\dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$ and the direction is upward.
Thus, the correct option is (D).
Note: While solving questions like this we should always draw a free body diagram (FBD) to show the forces exerted on the body. Also, you have to make some assumptions while writing equations that the string is taut and inextensible at each and every point of time, the pulley is massless, and also the string is massless.
Complete step by step solution:
In this question it is given that ${M_1} > {M_2}$, so the tension in the string connecting the block and surface is given by
${T_{BC}} = ({M_1} - {M_2})g$
It is also given in the question that the string BC is burnt, then this tension disappears and the tension in the spring becomes
${T_s} = {M_1}g$
The spring also gets elongated.
Now, the tension in the string connected to A and B is given by
${T_{AB}} = {M_1}g$
Hence, the resultant force on A becomes zero because the tension in string is balanced by spring tension.
Hence, the net force exerted on the block B which is upward in direction is given by
${F_B} = ({M_1} - {M_2})g$
So, the initial acceleration of the block B is given by
${u_B} = \dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$
Thus, the initial acceleration of mass ${M_1}$ is zero
And the initial acceleration of mass ${M_2}$ is $\dfrac{{({M_1} - {M_2})}}{{{M_2}}}g$ and the direction is upward.
Thus, the correct option is (D).
Note: While solving questions like this we should always draw a free body diagram (FBD) to show the forces exerted on the body. Also, you have to make some assumptions while writing equations that the string is taut and inextensible at each and every point of time, the pulley is massless, and also the string is massless.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If a gas expands at constant temperature it indicates class 11 chemistry JEE_Main
Two blocks are in contact on a frictionless table One class 11 physics JEE_Main
A horizontal force F mg3 is applied on the upper surface class 11 physics JEE_MAIN
A block of mass 5 kg is on a rough horizontal surface class 11 physics JEE_Main
Two 5 molal solutions are prepared by dissolving a class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main