
In the figure shown mass of both, the spherical and block is m. The moment of inertia of the spherical body about the center of mass is \[2m{R^2}\]. The spherical body rolls on a horizontal surface. There is no slipping at any surfaces in contact. The ratio of kinetic energy of the spherical body to that of block is
A. \[\dfrac{3}{4}\]
B. \[\dfrac{1}{3}\]
C. \[\dfrac{2}{3}\]
D. \[\dfrac{1}{2}\]
Answer
164.1k+ views
Hint:When a sphere is in pure rolling then the surface in contact will have same linear velocity in forward direction (the linear velocity of the center of mass) and the linear velocity due to rotation in backward direction, i.e. the point of contact is at instantaneous rest.
Formula used:
\[{K_{\left( {rotational} \right)}} = \dfrac{1}{2}I{\omega ^2}\]
Here I is the moment of inertia and \[\omega \]is the angular velocity.
\[{K_{\left( {translational} \right)}} = \dfrac{1}{2}m{v^2}\]
Here m is the mass of the body and v is the angular velocity.
Complete step by step solution:
Let the linear velocity of the center of mass of the spherical body is \[v'\]and the velocity of the block attached is \[v\]. If the angular velocity of the spherical body is \[\omega \].

Image: Block
For no slipping condition the net velocity at point P will be zero,
\[v' - 2\omega R = 0 \Rightarrow v' = 2\omega R\]
For no slipping condition the net velocity at point Q will be,
\[{v_Q} = \omega R + v'\]
\[\Rightarrow {v_Q} = 3\omega R\]
As the block and the inner sphere is attached with same string so the linear velocity will be same,
\[v = {v_Q} = 3\omega R\]
The total kinetic energy of the sphere is,
\[{K_s} = \dfrac{1}{2}m{\left( {v'} \right)^2} + \dfrac{1}{2}{\omega ^2}\]
\[\Rightarrow {K_s} = \dfrac{1}{2}m{\left( {2\omega R} \right)^2} + \dfrac{1}{2}\left( {2m{R^2}} \right){\omega ^2}\]
\[\Rightarrow {K_s} = 2m{\omega ^2}{R^2} + m{\omega ^2}{R^2}\]
\[\Rightarrow {K_s} = 3m{\omega ^2}{R^2}\]
The kinetic energy of the block is,
\[{K_B} = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow {K_B} = \dfrac{1}{2}m{\left( {3\omega R} \right)^2}\]
\[\Rightarrow {K_B} = \dfrac{9}{2}m{\omega ^2}{R^2}\]
The ratio is,
\[\therefore \dfrac{{{K_S}}}{{{K_B}}} = \dfrac{{\left( {3m{\omega ^2}{R^2}} \right)}}{{\left( {\dfrac{9}{2}m{\omega ^2}{R^2}} \right)}} = \dfrac{2}{3}\]
Therefore, the correct option is C.
Note: We should consider the direction of the rotation. If the center of mass is moving to the right then the frictional force due to the surface in contact will be acting to the left and hence the torque about the center will be clockwise.
Formula used:
\[{K_{\left( {rotational} \right)}} = \dfrac{1}{2}I{\omega ^2}\]
Here I is the moment of inertia and \[\omega \]is the angular velocity.
\[{K_{\left( {translational} \right)}} = \dfrac{1}{2}m{v^2}\]
Here m is the mass of the body and v is the angular velocity.
Complete step by step solution:
Let the linear velocity of the center of mass of the spherical body is \[v'\]and the velocity of the block attached is \[v\]. If the angular velocity of the spherical body is \[\omega \].

Image: Block
For no slipping condition the net velocity at point P will be zero,
\[v' - 2\omega R = 0 \Rightarrow v' = 2\omega R\]
For no slipping condition the net velocity at point Q will be,
\[{v_Q} = \omega R + v'\]
\[\Rightarrow {v_Q} = 3\omega R\]
As the block and the inner sphere is attached with same string so the linear velocity will be same,
\[v = {v_Q} = 3\omega R\]
The total kinetic energy of the sphere is,
\[{K_s} = \dfrac{1}{2}m{\left( {v'} \right)^2} + \dfrac{1}{2}{\omega ^2}\]
\[\Rightarrow {K_s} = \dfrac{1}{2}m{\left( {2\omega R} \right)^2} + \dfrac{1}{2}\left( {2m{R^2}} \right){\omega ^2}\]
\[\Rightarrow {K_s} = 2m{\omega ^2}{R^2} + m{\omega ^2}{R^2}\]
\[\Rightarrow {K_s} = 3m{\omega ^2}{R^2}\]
The kinetic energy of the block is,
\[{K_B} = \dfrac{1}{2}m{v^2}\]
\[\Rightarrow {K_B} = \dfrac{1}{2}m{\left( {3\omega R} \right)^2}\]
\[\Rightarrow {K_B} = \dfrac{9}{2}m{\omega ^2}{R^2}\]
The ratio is,
\[\therefore \dfrac{{{K_S}}}{{{K_B}}} = \dfrac{{\left( {3m{\omega ^2}{R^2}} \right)}}{{\left( {\dfrac{9}{2}m{\omega ^2}{R^2}} \right)}} = \dfrac{2}{3}\]
Therefore, the correct option is C.
Note: We should consider the direction of the rotation. If the center of mass is moving to the right then the frictional force due to the surface in contact will be acting to the left and hence the torque about the center will be clockwise.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
