
In the case of thorium $\left( {A = 232\;{\text{and}}\;Z = 90} \right)$ , we obtain an isotopes of lead $\left( {A = 208\;{\text{and}}\;Z = 82} \right)$ after some radioactive disintegrations. The number of $\alpha $ and $\beta - $ particles emitted are, respectively
(A) $6,3$
(B) $6,4$
(C) $5,5$
(D) $4,6$
Answer
220.2k+ views
Hint:- The alpha particle consists of two protons and two neutrons. Thus the mass number decreases by four when an alpha particle is emitted. And when the bet particle is emitted the number of protons will increase by one.
Step by step solution:
Given when the Thorium undergoes radioactive disintegration an isotope of Lead is obtained. The nuclear reaction can be expressed as
$_{90}T{h^{232}}{ \to _{82}}P{b^{208}} + {n_1}\alpha + {n_2}\beta - $
Where, ${n_1}$is the number of $\alpha $ particles and ${n_2}$ is the number of $\beta - $ particles.
The alpha article has mass number four. That is two protons and two neutrons. When an alpha particle is emitted the mass number of the parent nucleus will decrease by four. And while emitting the beta particle or gamma ray there is no change in the mass number.
We have given the mass number of the parent nucleus is $232$ and the mass number of isotope of lead is $208$ . Therefore the change happened in the mass number can be represented as,
$232 = 208 + 4{n_1}$
The number of alpha particles is multiplied by four, since the mass number of each alpha particle is four.
Therefore,
$
4{n_1} = 232 - 208 \\
4{n_1} = 24 \\
{n_1} = 6 \\
$
Thus the number of alpha particles is $6$ .
The number of protons is equal to the atomic number. We have given the atomic number of Thorium as $90$ and the atomic number of Lead as $82$ . And for alpha particles the number of protons is two. And in the case of $\beta - $ decay the number of protons will be increased by one. The relation connecting the number of protons in the disintegration is given as,
$90 = 82 + 2{n_1} - {n_2}$
Substitute the value for ${n_1}$.
$
90 = 82 + 2 \times 6 - {n_2} \\
{n_2} = 94 - 90 \\
{n_2} = 4 \\
$
Thus the number of $\beta - $ particles is $4$
The answer is option B.
Note: In beta minus decay the proton number increases by one because neutrons decays to protons. Where, in beta plus decay the proton number decreases by one because the neutron decays to a neutron.
Step by step solution:
Given when the Thorium undergoes radioactive disintegration an isotope of Lead is obtained. The nuclear reaction can be expressed as
$_{90}T{h^{232}}{ \to _{82}}P{b^{208}} + {n_1}\alpha + {n_2}\beta - $
Where, ${n_1}$is the number of $\alpha $ particles and ${n_2}$ is the number of $\beta - $ particles.
The alpha article has mass number four. That is two protons and two neutrons. When an alpha particle is emitted the mass number of the parent nucleus will decrease by four. And while emitting the beta particle or gamma ray there is no change in the mass number.
We have given the mass number of the parent nucleus is $232$ and the mass number of isotope of lead is $208$ . Therefore the change happened in the mass number can be represented as,
$232 = 208 + 4{n_1}$
The number of alpha particles is multiplied by four, since the mass number of each alpha particle is four.
Therefore,
$
4{n_1} = 232 - 208 \\
4{n_1} = 24 \\
{n_1} = 6 \\
$
Thus the number of alpha particles is $6$ .
The number of protons is equal to the atomic number. We have given the atomic number of Thorium as $90$ and the atomic number of Lead as $82$ . And for alpha particles the number of protons is two. And in the case of $\beta - $ decay the number of protons will be increased by one. The relation connecting the number of protons in the disintegration is given as,
$90 = 82 + 2{n_1} - {n_2}$
Substitute the value for ${n_1}$.
$
90 = 82 + 2 \times 6 - {n_2} \\
{n_2} = 94 - 90 \\
{n_2} = 4 \\
$
Thus the number of $\beta - $ particles is $4$
The answer is option B.
Note: In beta minus decay the proton number increases by one because neutrons decays to protons. Where, in beta plus decay the proton number decreases by one because the neutron decays to a neutron.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Other Pages
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

What Are Elastic Collisions in One Dimension?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Diffraction of Light - Young’s Single Slit Experiment

Understanding Charging and Discharging of Capacitors

