In the above-shown figure, the direction of the magnetic force and magnetic field is given then find out the direction of the particle velocity v.
A) To the right.
B) Downward in the plane of the page
C) Upward in the plane of the page
D) Out of the plane of the page
E) Into the plane of the page.
Answer
Verified
119.7k+ views
Hint: For the motion of a charged particle in a magnetic field, the magnetic field vector $B$, the velocity of the particle vector $v$, and the magnetic force vector $F$ that exerted on the particle are all perpendicular to each other.
Complete answer:
The right-hand rule of Fleming states that, to find the direction of the magnetic force on a positive charge, the thumb of the right-hand point in the direction of the velocity of the particle $v$, the fingers in the direction of the magnetic field ($B$), and the force ($F$) is directed perpendicular to the right-hand palm.
The magnetic force on a charged particle with positive charge $q$ moving in a magnetic field $B$ with a velocity $v$ (at angle $\theta $ to $B$) is –
\[\overrightarrow F = qvB\sin \theta \]
\[ \Rightarrow \overrightarrow F = q(\overrightarrow v \times \overrightarrow B )\]
Therefore we can say, force is the cross product of $B$ and $v$ and hence Force is in the perpendicular plane of velocity and magnetic field.
Hence In the figure,
the direction of the magnetic field and force are given. Now if we apply Fleming right-hand rule the direction of the particle velocity will be into the plane of the page.
Hence, the option (E) is the correct answer.
Note: Fleming's rules are applied for determining the relation between the directions of magnetic field, electric current and velocity of a conductor.
There are two rules,
Fleming's left-hand rule for motors which applies for an electric current induces motion in the conductor in the presence of magnetic fields known as Lorentz force.
Fleming's right-hand rule for generators, which applies for a conductor moving through a magnetic field, has an electromotive force induced in it as a result known as Faraday's law of induction.
Complete answer:
The right-hand rule of Fleming states that, to find the direction of the magnetic force on a positive charge, the thumb of the right-hand point in the direction of the velocity of the particle $v$, the fingers in the direction of the magnetic field ($B$), and the force ($F$) is directed perpendicular to the right-hand palm.
The magnetic force on a charged particle with positive charge $q$ moving in a magnetic field $B$ with a velocity $v$ (at angle $\theta $ to $B$) is –
\[\overrightarrow F = qvB\sin \theta \]
\[ \Rightarrow \overrightarrow F = q(\overrightarrow v \times \overrightarrow B )\]
Therefore we can say, force is the cross product of $B$ and $v$ and hence Force is in the perpendicular plane of velocity and magnetic field.
Hence In the figure,
the direction of the magnetic field and force are given. Now if we apply Fleming right-hand rule the direction of the particle velocity will be into the plane of the page.
Hence, the option (E) is the correct answer.
Note: Fleming's rules are applied for determining the relation between the directions of magnetic field, electric current and velocity of a conductor.
There are two rules,
Fleming's left-hand rule for motors which applies for an electric current induces motion in the conductor in the presence of magnetic fields known as Lorentz force.
Fleming's right-hand rule for generators, which applies for a conductor moving through a magnetic field, has an electromotive force induced in it as a result known as Faraday's law of induction.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Symbol of switch is ON position is class 12 physics JEE_Main
JEE Main 2025 Helpline Numbers for Aspiring Candidates
Electromagnetic Waves Chapter - Physics JEE Main
A combination of five resistors is connected to a cell class 12 physics JEE_Main
Other Pages
JEE Advanced 2024 Syllabus Weightage
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
JEE Mains 2025: Exam Dates, Updates, Eligibility and More
Christmas Day 2024 - Origin, History, and Why Do We Celebrate It