
In the above circuit the current in each resistance is :
a) 0 A
b) 1 A
c) 0.25 A
d) 0.5 A

Answer
216k+ views
Hint: The given circuit can be split using Kirchhoff’s law. Apply Kirchhoff’s law by splitting the circuit into 3 loops and identify the current at each resistance.
Complete step by step Solution:
The given circuit can be split into 3 loops , loop 1 consisting of two 2V source and 1 ohm resistor and the second loop consisting of two 2V source and two 1 ohm resistors and the final loop similar as the second loop.
To identify the current at each loop we can use Kirchhoff’s Voltage rule and grounding method. At the grounding method, we can close the loop at one point where we can consider it as ground.
Now the flow of current takes place from the positive node of 2V source in the lower section to the negative node of the source in lower section.
Applying KCL at node 1,
Note: Current at loop1 is assumed as i1 , current at loop2 is assumed as i2 and current at loop3 is assumed as i3.
The current flowing in loop 1 is i1
\[2 - 2 + ({i_1} - {i_2}) \times 1 = 0\]
\[ \Rightarrow {i_1} = {i_2}\]
Applying KCL at node 2,
\[2 + (({i_1} - {i_2}) \times 1) - 2 + (({i_2} - {i_3}) \times 1) = 0\]
Since, i1=i2
\[2 - 2 + (({i_2} - {i_3}) \times 1) = 0\]
\[ \Rightarrow {i_2} = {i_3}\]
Applying KVL at loop 3,
\[2 + (({i_2} - {i_3}) \times 1) - 2 + ({i_3} \times 1) = 0\]
Since i2=i3
\[ \Rightarrow 2 - 2 + ({i_3} \times 1) = 0\]
\[ \Rightarrow {i_3} = 0\]
Therefore since \[{i_2} = {i_3}\], the value of \[{i_2} = 0\]
And since the value of \[{i_1} = {i_2}\]
The current value in loop 1 is also equal to 0.
Hence it is found that the value of current across all the resistors to be zero. Hence, option(a) is the right answer.
Note:
Kirchhoff’s Voltage law states that in any closed loop network, the total voltage that is circulating in the loop is equal to the algebraic sum of all voltage drops inside the loop.
Complete step by step Solution:
The given circuit can be split into 3 loops , loop 1 consisting of two 2V source and 1 ohm resistor and the second loop consisting of two 2V source and two 1 ohm resistors and the final loop similar as the second loop.
To identify the current at each loop we can use Kirchhoff’s Voltage rule and grounding method. At the grounding method, we can close the loop at one point where we can consider it as ground.
Now the flow of current takes place from the positive node of 2V source in the lower section to the negative node of the source in lower section.
Applying KCL at node 1,
Note: Current at loop1 is assumed as i1 , current at loop2 is assumed as i2 and current at loop3 is assumed as i3.
The current flowing in loop 1 is i1
\[2 - 2 + ({i_1} - {i_2}) \times 1 = 0\]
\[ \Rightarrow {i_1} = {i_2}\]
Applying KCL at node 2,
\[2 + (({i_1} - {i_2}) \times 1) - 2 + (({i_2} - {i_3}) \times 1) = 0\]
Since, i1=i2
\[2 - 2 + (({i_2} - {i_3}) \times 1) = 0\]
\[ \Rightarrow {i_2} = {i_3}\]
Applying KVL at loop 3,
\[2 + (({i_2} - {i_3}) \times 1) - 2 + ({i_3} \times 1) = 0\]
Since i2=i3
\[ \Rightarrow 2 - 2 + ({i_3} \times 1) = 0\]
\[ \Rightarrow {i_3} = 0\]
Therefore since \[{i_2} = {i_3}\], the value of \[{i_2} = 0\]
And since the value of \[{i_1} = {i_2}\]
The current value in loop 1 is also equal to 0.
Hence it is found that the value of current across all the resistors to be zero. Hence, option(a) is the right answer.
Note:
Kirchhoff’s Voltage law states that in any closed loop network, the total voltage that is circulating in the loop is equal to the algebraic sum of all voltage drops inside the loop.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

