Answer

Verified

52.2k+ views

**Hint:**These types of questions where cards are missing are similar to the questions to which we have to choose the cards so generally we apply the same concept in both of these type of questions i.e. to select card from each and every suit and to find the probability. In these kinds of questions we must have knowledge of cards that there are a total of $52$ cards in the pack of cards.

**Concept:**

Random experiments $\therefore $

$ \to $ Use combination concept

Formula $ = {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$

$ \to $ 4 suits (Club 13, Spade 13, Heart 13, Diamond 13)

**Complete step by step answer:**

Here in the question, it is given that in shuffling a pack of playing cards, four are accidently dropped and we need to find the probability of the event that the missing card should be one from each suit.

The total number of ways in which 4 cards dropped out of 52 cards which is ${}^{52}{C_4}$

$\therefore $Exhaustive number of cases $ = {}^{52}{C_4}$

There are four suits and each suit contains 13 cards.

$\therefore $The number of ways of selecting one card from each suit is \[{}^{13}{C_1} \times {}^{13}{C_1} \times {}^{13}{C_1} \times {}^{13}{C_1} = {\left( {{}^{13}{C_1}} \right)^4}\]

So, the required probability is

$\dfrac{{{{\left( {{}^{13}{C_1}} \right)}^4}}}{{{}^{52}{C_4}}}$

By using formula $\dfrac{{n!}}{{r!\left( {n - r} \right)!}}$

= $\dfrac{{\dfrac{{13!}}{{1!\left( {13 - 1} \right)!}} \times \dfrac{{13!}}{{1!\left( {13 - 1} \right)!}} \times \dfrac{{13!}}{{1!\left( {13 - 1} \right)!}} \times \dfrac{{13!}}{{1!\left( {13 - 1} \right)!}}}}{{\dfrac{{52!}}{{4!\left( {52 - 4} \right)!}}}}$

On solving this we got,

$ = \dfrac{{\dfrac{{13 \times 12!}}{{1 \times 12!}} \times \dfrac{{13 \times 12!}}{{1 \times 12!}} \times \dfrac{{13 \times 12!}}{{1 \times 12!}} \times \dfrac{{13 \times 12!}}{{1 \times 12!}}}}{{\dfrac{{52!}}{{4! \times 48!}}}}$

So, $\dfrac{{13 \times 13 \times 13 \times 13}}{{270725}} = 0.105498$

The required probability is 0.105498.

**So the correct option is (D).**

**Note:**In this type of questions students will face problems while solving or using formula. So be careful while using or solving formulas. Through formula questions become very simple and easy. Also one should make the mistake in calculation factorial so we are careful while solving this. One should also remember the knowledge of how many cards and suits are there in the pack of cards and about the number of cards in each suit because without this knowledge we will not be able to solve such problems.

Recently Updated Pages

In a family each daughter has the same number of brothers class 10 maths JEE_Main

If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main

What is the value of cos 2Aleft 3 4cos 2A right2 + class 10 maths JEE_Main

If left dfracleft 2sinalpha rightleft 1 + cosalpha class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

From the top of a hill h meters high the angles of class 10 maths JEE_Main

Other Pages

The resultant of vec A and vec B is perpendicular to class 11 physics JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

when an object Is placed at a distance of 60 cm from class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Which of the following sets of displacements might class 11 physics JEE_Main