Answer
Verified
81k+ views
Hint: The maximum kinetic energy of ejected electrons in a photoelectric experiment can be given by the energy of the radiation minus the work function of the metal. The work function is an energy threshold which is the minimum energy required to eject the electron without giving it a kinetic energy.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal.
Complete Step-by-Step Solution:
We are told that a light of wavelength of 260 nm used as an incident light in a photoelectric experiment. Whatever the metal that was used, we are informed that the light must have a threshold wavelength of 380 nm (maximum wavelength which will eject an electron). We are to determine the maximum kinetic energy of the electrons.
We note that the kinetic energy can be given as
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal. This can be written as
\[K{E_{\max }} = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\] since \[E = \dfrac{{hc}}{\lambda }\] where \[h\] is Planck’s constant and \[c\] is speed of light, \[\lambda \] is the wavelength.
As given, \[E\left( {{\text{in eV}}} \right) = \dfrac{{1237}}{{\lambda ({\text{in nm)}}}}\]
Then,
\[K{E_{\max }} = \dfrac{{1237}}{{260}} - \dfrac{{1237}}{{380}}\]
By computation, we have
\[K{E_{\max }} = 1.5eV\]
Hence, the correct option is A
Note: Although it may be odd or confusing, observe that the minimum energy to eject a photon corresponds to the maximum wavelength required. This is because the wavelength and energy are inversely related.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal.
Complete Step-by-Step Solution:
We are told that a light of wavelength of 260 nm used as an incident light in a photoelectric experiment. Whatever the metal that was used, we are informed that the light must have a threshold wavelength of 380 nm (maximum wavelength which will eject an electron). We are to determine the maximum kinetic energy of the electrons.
We note that the kinetic energy can be given as
\[K{E_{\max }} = E - {E_0}\] where \[K{E_{\max }}\] is the maximum kinetic energy of an electron, \[E\] is the energy of the incident radiation, and \[{E_0}\] is the work function (threshold energy) of the metal. This can be written as
\[K{E_{\max }} = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\] since \[E = \dfrac{{hc}}{\lambda }\] where \[h\] is Planck’s constant and \[c\] is speed of light, \[\lambda \] is the wavelength.
As given, \[E\left( {{\text{in eV}}} \right) = \dfrac{{1237}}{{\lambda ({\text{in nm)}}}}\]
Then,
\[K{E_{\max }} = \dfrac{{1237}}{{260}} - \dfrac{{1237}}{{380}}\]
By computation, we have
\[K{E_{\max }} = 1.5eV\]
Hence, the correct option is A
Note: Although it may be odd or confusing, observe that the minimum energy to eject a photon corresponds to the maximum wavelength required. This is because the wavelength and energy are inversely related.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A fish is near the center of a spherical waterfilled class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The area of a circle whose centre is left hk right class 10 maths JEE_Main
A parallel plate air condenser is connected with a class 12 physics JEE_MAIN
If a wire of resistance R is stretched to double of class 12 physics JEE_Main