
In electrolysis of dilute \[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\] using platinum electrodes
A. \[{{\rm{H}}_{\rm{2}}}\] is evolved at cathode
B. \[{\rm{N}}{{\rm{H}}_{\rm{3}}}\] is produced at anode
C. \[{\rm{C}}{{\rm{l}}_{\rm{2}}}\] is obtained at cathode
D. \[{{\rm{O}}_{\rm{2}}}\] is produced
Answer
163.2k+ views
Hint: A process in which the passing of electricity takes place through the electrolyte and a chemical reaction occurs is termed electrolysis. There is the presence of different types of ions in the solution. Here, we have to determine the ions present in the solution and then decide which ion is attracted to which electrode.
Complete Step by Step Solution:
In an aqueous solution, the dissociation of dilute sulphuric acid to sulphate ions and hydrogen ions takes place. Also water gives hydroxide ions and protons. The chemical reactions are:
\[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right) \to 2{{\rm{H}}^ + }\left( {aq} \right) + {\rm{S}}{{\rm{O}}_{\rm{4}}}^{2 - }\left( {aq} \right)\]
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) \to {{\rm{H}}^ + }\left( {aq} \right) + {\rm{O}}{{\rm{H}}^ - }\left( {aq} \right)\]
As anode is a positive electrode, it attracts sulphate or hydroxide ions towards itself. The discharge of hydroxide ions at anode liberates oxygen gas and the discharge of sulphate ions at anode forms sulphur dioxide gas. But electrode potential for discharge of hydroxide ion is less than the sulphate ions. So, preferential discharge of hydroxide ion occurs. Therefore, liberation of oxygen gas takes place at anode.
\[4{\rm{O}}{{\rm{H}}^ - }\left( {aq} \right) \to 2{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) + {{\rm{O}}_{\rm{2}}}\left( g \right) + 4{e^ - }\]
As we know, cathode is a negative electrode. Therefore, protons are attracted towards the cathode. So, the discharge of protons at the cathode forms hydrogen gas. The chemical reaction is,
\[2{{\rm{H}}^ + }\left( {aq} \right) + 2{e^ - } \to {{\rm{H}}_{\rm{2}}}\left( g \right)\]
Therefore, liberation of hydrogen gas (\[{{\rm{H}}_{\rm{2}}}\] ) takes place at cathode.
Hence, option A is right.
Note: The advantages of using a platinum electrode in a hydrogen cell is because of its inert nature that is resistance to corrosion,the ability of the platinum to catalyse reduction of proton and requirement of a high intrinsic exchange current density for reduction of a proton in platinum.
Complete Step by Step Solution:
In an aqueous solution, the dissociation of dilute sulphuric acid to sulphate ions and hydrogen ions takes place. Also water gives hydroxide ions and protons. The chemical reactions are:
\[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right) \to 2{{\rm{H}}^ + }\left( {aq} \right) + {\rm{S}}{{\rm{O}}_{\rm{4}}}^{2 - }\left( {aq} \right)\]
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) \to {{\rm{H}}^ + }\left( {aq} \right) + {\rm{O}}{{\rm{H}}^ - }\left( {aq} \right)\]
As anode is a positive electrode, it attracts sulphate or hydroxide ions towards itself. The discharge of hydroxide ions at anode liberates oxygen gas and the discharge of sulphate ions at anode forms sulphur dioxide gas. But electrode potential for discharge of hydroxide ion is less than the sulphate ions. So, preferential discharge of hydroxide ion occurs. Therefore, liberation of oxygen gas takes place at anode.
\[4{\rm{O}}{{\rm{H}}^ - }\left( {aq} \right) \to 2{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) + {{\rm{O}}_{\rm{2}}}\left( g \right) + 4{e^ - }\]
As we know, cathode is a negative electrode. Therefore, protons are attracted towards the cathode. So, the discharge of protons at the cathode forms hydrogen gas. The chemical reaction is,
\[2{{\rm{H}}^ + }\left( {aq} \right) + 2{e^ - } \to {{\rm{H}}_{\rm{2}}}\left( g \right)\]
Therefore, liberation of hydrogen gas (\[{{\rm{H}}_{\rm{2}}}\] ) takes place at cathode.
Hence, option A is right.
Note: The advantages of using a platinum electrode in a hydrogen cell is because of its inert nature that is resistance to corrosion,the ability of the platinum to catalyse reduction of proton and requirement of a high intrinsic exchange current density for reduction of a proton in platinum.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Instantaneous Velocity - Formula based Examples for JEE
