
In electrolysis of dilute \[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\] using platinum electrodes
A. \[{{\rm{H}}_{\rm{2}}}\] is evolved at cathode
B. \[{\rm{N}}{{\rm{H}}_{\rm{3}}}\] is produced at anode
C. \[{\rm{C}}{{\rm{l}}_{\rm{2}}}\] is obtained at cathode
D. \[{{\rm{O}}_{\rm{2}}}\] is produced
Answer
161.4k+ views
Hint: A process in which the passing of electricity takes place through the electrolyte and a chemical reaction occurs is termed electrolysis. There is the presence of different types of ions in the solution. Here, we have to determine the ions present in the solution and then decide which ion is attracted to which electrode.
Complete Step by Step Solution:
In an aqueous solution, the dissociation of dilute sulphuric acid to sulphate ions and hydrogen ions takes place. Also water gives hydroxide ions and protons. The chemical reactions are:
\[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right) \to 2{{\rm{H}}^ + }\left( {aq} \right) + {\rm{S}}{{\rm{O}}_{\rm{4}}}^{2 - }\left( {aq} \right)\]
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) \to {{\rm{H}}^ + }\left( {aq} \right) + {\rm{O}}{{\rm{H}}^ - }\left( {aq} \right)\]
As anode is a positive electrode, it attracts sulphate or hydroxide ions towards itself. The discharge of hydroxide ions at anode liberates oxygen gas and the discharge of sulphate ions at anode forms sulphur dioxide gas. But electrode potential for discharge of hydroxide ion is less than the sulphate ions. So, preferential discharge of hydroxide ion occurs. Therefore, liberation of oxygen gas takes place at anode.
\[4{\rm{O}}{{\rm{H}}^ - }\left( {aq} \right) \to 2{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) + {{\rm{O}}_{\rm{2}}}\left( g \right) + 4{e^ - }\]
As we know, cathode is a negative electrode. Therefore, protons are attracted towards the cathode. So, the discharge of protons at the cathode forms hydrogen gas. The chemical reaction is,
\[2{{\rm{H}}^ + }\left( {aq} \right) + 2{e^ - } \to {{\rm{H}}_{\rm{2}}}\left( g \right)\]
Therefore, liberation of hydrogen gas (\[{{\rm{H}}_{\rm{2}}}\] ) takes place at cathode.
Hence, option A is right.
Note: The advantages of using a platinum electrode in a hydrogen cell is because of its inert nature that is resistance to corrosion,the ability of the platinum to catalyse reduction of proton and requirement of a high intrinsic exchange current density for reduction of a proton in platinum.
Complete Step by Step Solution:
In an aqueous solution, the dissociation of dilute sulphuric acid to sulphate ions and hydrogen ions takes place. Also water gives hydroxide ions and protons. The chemical reactions are:
\[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\left( {aq} \right) \to 2{{\rm{H}}^ + }\left( {aq} \right) + {\rm{S}}{{\rm{O}}_{\rm{4}}}^{2 - }\left( {aq} \right)\]
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) \to {{\rm{H}}^ + }\left( {aq} \right) + {\rm{O}}{{\rm{H}}^ - }\left( {aq} \right)\]
As anode is a positive electrode, it attracts sulphate or hydroxide ions towards itself. The discharge of hydroxide ions at anode liberates oxygen gas and the discharge of sulphate ions at anode forms sulphur dioxide gas. But electrode potential for discharge of hydroxide ion is less than the sulphate ions. So, preferential discharge of hydroxide ion occurs. Therefore, liberation of oxygen gas takes place at anode.
\[4{\rm{O}}{{\rm{H}}^ - }\left( {aq} \right) \to 2{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( l \right) + {{\rm{O}}_{\rm{2}}}\left( g \right) + 4{e^ - }\]
As we know, cathode is a negative electrode. Therefore, protons are attracted towards the cathode. So, the discharge of protons at the cathode forms hydrogen gas. The chemical reaction is,
\[2{{\rm{H}}^ + }\left( {aq} \right) + 2{e^ - } \to {{\rm{H}}_{\rm{2}}}\left( g \right)\]
Therefore, liberation of hydrogen gas (\[{{\rm{H}}_{\rm{2}}}\] ) takes place at cathode.
Hence, option A is right.
Note: The advantages of using a platinum electrode in a hydrogen cell is because of its inert nature that is resistance to corrosion,the ability of the platinum to catalyse reduction of proton and requirement of a high intrinsic exchange current density for reduction of a proton in platinum.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Degree of Dissociation and Its Formula With Solved Example for JEE
