
In Carnot engine efficiency is \[40\% \], when the temperature of hot reservoirs is \[T\]. For efficiency \[50\% \] what will be the temperature of the hot reservoir?
${\text{A}}.{\text{ }}\dfrac{T}{5}$
${\text{B}}{\text{. }}\dfrac{{2T}}{5}$
${\text{C}}{\text{. 6T}}$
${\text{D}}{\text{. }}\dfrac{{6T}}{5}$
Answer
124.2k+ views
Hint: The efficiency of $\eta $is equal to the work done \[\left( W \right)\] divided by the heat input \[\left( Q \right)\] .First we have to use the carnot engine efficiency value to find the values by using the formula. Also we have to use the given data to find the required solution. We can find out the value is the temperature of hot reservoir \[\left( T \right)\]
Formula Used:
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step by step answer:
The efficiency of $\eta $ is equal to Work done is divided by heat in put,
Work done is \[W\], and heat in put is\[Q\] ,
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\implies \eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Where,
\[{T_2}\]= Temperature of sink, and
$\implies {T_1}$= temperature of hot reservoir
Substitute the values, so we can write it as,
$\implies \dfrac{{40}}{{100}} = 1 - \dfrac{{{T_1}}}{{{T_2}}}$
Replacing the term and we can write it as,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{{40}}{{100}}$
Taking LCM as RHS and we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{100 - 40}}{{100}}$
On subtracting we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{60}}{{100}}$
On dividing the terms we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 0.6$
Taking the cross multiplication we get,
$ \Rightarrow {T_2} = 0.6{T_1}$
Now, for efficiency \[50\% \]
So we can apply the formula and we get,
$\implies \dfrac{{50}}{{100}} = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
On dividing the term we get,
$ \Rightarrow 0.5 = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
Putting the value for ${T_2}$ and we get,
$\dfrac{{0.6{T_1}}}{{{T_1}^\prime }} = 0.5$
Taking the term as replace we get,
$\dfrac{{0.6}}{{0.5}}{T_1} = {T_1}^\prime $
On simplification we get,
$ \Rightarrow {T_1}^\prime = \dfrac{6}{5}{T_1}$
Hence, the correct answer is option \[D\].
Note: A thermodynamic cycle is said to have occurred, when a system is taken throughout a series of different states and finally returned to its initial state. A Carnot principle states that the efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs. Also it is used only for cyclical devices like heat engines.
Formula Used:
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step by step answer:
The efficiency of $\eta $ is equal to Work done is divided by heat in put,
Work done is \[W\], and heat in put is\[Q\] ,
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\implies \eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Where,
\[{T_2}\]= Temperature of sink, and
$\implies {T_1}$= temperature of hot reservoir
Substitute the values, so we can write it as,
$\implies \dfrac{{40}}{{100}} = 1 - \dfrac{{{T_1}}}{{{T_2}}}$
Replacing the term and we can write it as,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{{40}}{{100}}$
Taking LCM as RHS and we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{100 - 40}}{{100}}$
On subtracting we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{60}}{{100}}$
On dividing the terms we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 0.6$
Taking the cross multiplication we get,
$ \Rightarrow {T_2} = 0.6{T_1}$
Now, for efficiency \[50\% \]
So we can apply the formula and we get,
$\implies \dfrac{{50}}{{100}} = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
On dividing the term we get,
$ \Rightarrow 0.5 = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
Putting the value for ${T_2}$ and we get,
$\dfrac{{0.6{T_1}}}{{{T_1}^\prime }} = 0.5$
Taking the term as replace we get,
$\dfrac{{0.6}}{{0.5}}{T_1} = {T_1}^\prime $
On simplification we get,
$ \Rightarrow {T_1}^\prime = \dfrac{6}{5}{T_1}$
Hence, the correct answer is option \[D\].
Note: A thermodynamic cycle is said to have occurred, when a system is taken throughout a series of different states and finally returned to its initial state. A Carnot principle states that the efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs. Also it is used only for cyclical devices like heat engines.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main Login 2045: Step-by-Step Instructions and Details

Physics Average Value and RMS Value JEE Main 2025

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main Course 2025: Get All the Relevant Details

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
