
In a stationary wave, the distance between a node and the next antinode is $10cm$. What is the wavelength?
Answer
232.8k+ views
Hint: Node is a point of minimum displacement of the standing wave and antinode is the point of maximum displacement of the standing wave. To solve this question, we must know the distance between a node and an antinode, and then, how to relate the distance between them to the wavelength of the wave.
Complete step by step solution:
While observing a standing wave, we can see that the distance between a node and an antinode is one-half the distance between a crest and a trough.
So, next comes the relation between wavelength and the distance between a node and an antinode.
We know the distance between a crest and a trough is one-half the wavelength. Therefore, the distance between a node and an antinode is one-fourth the wavelength.
Hence, mathematically, we can write, assuming $l$ to be the distance between a node and an antinode:
$l=\dfrac{\lambda }{4}$
According to the question:
$l=10cm$
$\Rightarrow \dfrac{\lambda }{4}=10cm$
$\Rightarrow \lambda =40cm$
Therefore, the wavelength of the standing wave is $40cm$.
Note: We must be very careful in writing the mathematical relation of the distance between a node and an antinode and the wavelength, as while writing this relation is a very common silly mistake. We must not confuse between a standing wave and a stationary wave; they are the same wave.
Sometimes, there will be a problem like two waves traveling in opposite directions coincide, the distance of the node and antinode of the resultant wave is, say $xcm$. And we are supposed to the wavelength of the resultant wave. We must know that a standing wave is formed by the interference of two waves. Therefore, we have to find the same thing as we did in this question.
Complete step by step solution:
While observing a standing wave, we can see that the distance between a node and an antinode is one-half the distance between a crest and a trough.
So, next comes the relation between wavelength and the distance between a node and an antinode.
We know the distance between a crest and a trough is one-half the wavelength. Therefore, the distance between a node and an antinode is one-fourth the wavelength.
Hence, mathematically, we can write, assuming $l$ to be the distance between a node and an antinode:
$l=\dfrac{\lambda }{4}$
According to the question:
$l=10cm$
$\Rightarrow \dfrac{\lambda }{4}=10cm$
$\Rightarrow \lambda =40cm$
Therefore, the wavelength of the standing wave is $40cm$.
Note: We must be very careful in writing the mathematical relation of the distance between a node and an antinode and the wavelength, as while writing this relation is a very common silly mistake. We must not confuse between a standing wave and a stationary wave; they are the same wave.
Sometimes, there will be a problem like two waves traveling in opposite directions coincide, the distance of the node and antinode of the resultant wave is, say $xcm$. And we are supposed to the wavelength of the resultant wave. We must know that a standing wave is formed by the interference of two waves. Therefore, we have to find the same thing as we did in this question.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

