
In a standing wave formed as a result of reflection from a surface, the ratio of the amplitude at an antinode to that at node is x. The fraction of energy that is reflected is:
A. \[{\left[ {\dfrac{{x - 1}}{x}} \right]^2}\]
B. \[{\left[ {\dfrac{x}{{x + 1}}} \right]^2}\]
C. \[{\left[ {\dfrac{{x - 1}}{{x + 1}}} \right]^2}\]
D. \[{\left[ {\dfrac{1}{x}} \right]^2}\]
Answer
217.5k+ views
Hint: When two waves interfere then a stationary or standing wave is formed. In the question relation between the amplitude and x is given. As we know that the energy transported by any wave is directly proportional to the square of the amplitude. By using this concept, we can easily find the value for energy reflected.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Complete answer:
It is given that the ratio of the amplitude at an antinode to that at node is x.
\[\dfrac{{{A_i} + {A_r}}}{{{A_i} - {A_r}}} = x\]
Where \[{A_i}\] is the amplitude of incident wave and \[{A_r}\] is the amplitude of reflected waves.
By applying componendo and dividendo on both the sides, we get
\[\dfrac{{{A_r}}}{{{A_i}}} = \dfrac{{x - 1}}{{x + 1}}\]
As we know that energy that is reflected is directly proportional to the square of the amplitude.
\[E \propto {A^2}\]
\[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{{A_r}}}{{{A_i}}}} \right)^2} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Or \[\dfrac{{{E_r}}}{{{E_i}}} = {\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Therefore, the fraction of energy that is reflected is \[{\left( {\dfrac{{x - 1}}{{x + 1}}} \right)^2}\]
Hence option C is the correct answer
Note: The energy (E) transported by a wave is directly proportional to the square of the amplitude (A) that is \[E \propto {A^2}\] . So whenever change occurs in the amplitude the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy. The amplitude of a wave is defined as the distance from the centre lines to the top of a crest to the bottom of a trough.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

