In a $R - L - C$ series circuit, the potential difference across each element is $20{\text{V}}$. Now the value of resistance alone is doubled, then P.D. across $R$, $L$ and $C$ is respectively
(A) $20{\text{V, 10V, 10V}}$
(B) $20{\text{V, 20V, 20V}}$
(C) $20{\text{V, 40V, 40V}}$
(D) $10{\text{V, 20V, 20V}}$
Answer
Verified
119.4k+ views
Hint: To solve this question, we need to obtain the emf and the frequency of the source. Then putting them in the formulae of the voltages across the three elements, we will get the required values.
Complete step-by-step solution
Let ${V_R}'$, ${V_R}'$, and ${V_R}'$ be the respective required voltages on the resistor, inductor and the capacitor.
Let $i$ be the current in the circuit.
We know that the net emf of the source in a series $R - L - C$circuit is given by
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
According to the question, ${V_R} = {V_L} = {V_C} = 20{\text{V}}$
So, $V = \sqrt {{{20}^2} + {{\left( {20 - 20} \right)}^2}} $
$V = 20{\text{V}}$
Therefore, the source emf is of $20{\text{V}}$
Now, as ${V_L} = {V_C}$
Writing the voltages in terms of the impedances, we have
$i{X_L} = i{X_C}$
Cancelling $i$ from both the sides
${X_L} = {X_C}$
As we know, ${X_L} = \omega L$ and ${X_C} = \dfrac{1}{{\omega C}}$
So, $\omega L = \dfrac{1}{{\omega C}}$
Or ${\omega ^2} = \dfrac{1}{{LC}}$
Taking square root, we get
$\omega = \dfrac{1}{{\sqrt {LC} }}$
Therefore, the source has a frequency equal to the resonant frequency.
We know that in the resonance condition, the entire source voltage appears on the resistance.
So, the voltage on the resistor is always equal to the net emf of the source and is independent of the value of the resistance.
Therefore, doubling the value of the resistance does not change its voltage.
Hence, ${V_R}' = 20V$
But, according to the ohm’s law, we have
${V_R}' = i'R'$
As ${V_R}' = {V_R}$, and $R' = 2R$, we have
${V_R} = i'(2R)$
Substituting ${V_R} = iR$
$iR = 2i'R$
$i' = \dfrac{i}{2}$
So, the current is reduced to half.
Now, we have
${V_L}' = i'{X_L}$
$\Rightarrow {V_L}' = \dfrac{i}{2}{X_L}$
Substituting ${V_L} = i{X_L}$, we get
$\Rightarrow {V_L}' = \dfrac{{{V_L}}}{2}$
$\Rightarrow {V_L}' = \dfrac{{20}}{2} = 10{\text{V}}$
For resonance, \[{V_C}' = {V_L}' = 10{\text{V}}\]
Thus, the P.D. across $R$, $L$ and $C$ are respectively $20{\text{V, 10V, 10V}}$
Hence, the correct answer is option A.
Note: Do not try to obtain the value of net source emf by the algebraic addition of the voltages. Always remember that the voltages in a series $R - L - C$ circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of the three voltages given.
Complete step-by-step solution
Let ${V_R}'$, ${V_R}'$, and ${V_R}'$ be the respective required voltages on the resistor, inductor and the capacitor.
Let $i$ be the current in the circuit.
We know that the net emf of the source in a series $R - L - C$circuit is given by
$V = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
According to the question, ${V_R} = {V_L} = {V_C} = 20{\text{V}}$
So, $V = \sqrt {{{20}^2} + {{\left( {20 - 20} \right)}^2}} $
$V = 20{\text{V}}$
Therefore, the source emf is of $20{\text{V}}$
Now, as ${V_L} = {V_C}$
Writing the voltages in terms of the impedances, we have
$i{X_L} = i{X_C}$
Cancelling $i$ from both the sides
${X_L} = {X_C}$
As we know, ${X_L} = \omega L$ and ${X_C} = \dfrac{1}{{\omega C}}$
So, $\omega L = \dfrac{1}{{\omega C}}$
Or ${\omega ^2} = \dfrac{1}{{LC}}$
Taking square root, we get
$\omega = \dfrac{1}{{\sqrt {LC} }}$
Therefore, the source has a frequency equal to the resonant frequency.
We know that in the resonance condition, the entire source voltage appears on the resistance.
So, the voltage on the resistor is always equal to the net emf of the source and is independent of the value of the resistance.
Therefore, doubling the value of the resistance does not change its voltage.
Hence, ${V_R}' = 20V$
But, according to the ohm’s law, we have
${V_R}' = i'R'$
As ${V_R}' = {V_R}$, and $R' = 2R$, we have
${V_R} = i'(2R)$
Substituting ${V_R} = iR$
$iR = 2i'R$
$i' = \dfrac{i}{2}$
So, the current is reduced to half.
Now, we have
${V_L}' = i'{X_L}$
$\Rightarrow {V_L}' = \dfrac{i}{2}{X_L}$
Substituting ${V_L} = i{X_L}$, we get
$\Rightarrow {V_L}' = \dfrac{{{V_L}}}{2}$
$\Rightarrow {V_L}' = \dfrac{{20}}{2} = 10{\text{V}}$
For resonance, \[{V_C}' = {V_L}' = 10{\text{V}}\]
Thus, the P.D. across $R$, $L$ and $C$ are respectively $20{\text{V, 10V, 10V}}$
Hence, the correct answer is option A.
Note: Do not try to obtain the value of net source emf by the algebraic addition of the voltages. Always remember that the voltages in a series $R - L - C$ circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of the three voltages given.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Charging and Discharging of Capacitor
JEE Main Chemistry Exam Pattern 2025
Degree of Dissociation and Its Formula With Solved Example for JEE