
In a meter bridge experiment resistances are connected as shown in figure. Initially resistance $P = 4\Omega $ and the neutral point $N$ is at $60cm$ from $A$. Now an unknown resistance $R$ is connected in series to $P$ and the new position of the neutral point is at $80cm$ from $A$. The value of unknown resistance $R$ is:
(A) $6\Omega $
(B) $7\Omega $
(C) $\dfrac{{33}}{5}\Omega $
(D) $\dfrac{{20}}{3}\Omega $
Answer
233.1k+ views
Hint: Using the formula of a meter bridge, first calculate the value of the resistance $Q$. Then with this value of $Q$ we can determine the value of the unknown resistance $R$ using the same formula.
Formula used
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$, where $X$ is the known resistance and $R$is the unknown resistance and $l$ is in $cm$.
Complete step by step solution
A meter bridge is an electrical instrument that works on the principle of a Wheatstone bridge. It is used in finding the unknown resistance of a conductor.
It consists of a long wire of $1m$ which is separated into two sections. In the left section we attach the known resistance and in the right section, we attach the unknown resistance. A jockey is present to detect the balance point. The galvanometer indicates the balance point. The balance point is the point on the wire where the galvanometer shows zero deflection.
Let $X$ be the known resistance and $R$ be the unknown resistance.
Then we can write,
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$
Using this formula we can determine the value of the unknown resistance.
The distance between $A$ and $B$ is $100cm$
It is given that $AN = 60cm$
So, $NB$ would be equal to $\left( {100 - 60} \right)cm = 40cm$
From this diagram we can see that,
$
\dfrac{P}{{AN}} = \dfrac{Q}{{NB}} \\
\Rightarrow \dfrac{4}{{60}} = \dfrac{Q}{{40}} \\
\Rightarrow Q = \dfrac{{16}}{6} \\
\Rightarrow Q = \dfrac{8}{3}\Omega \\
$
Now when another resistance $R$ is connected in series with $P$, $AN$ becomes $80cm$
So, the value of the unknown resistance becomes,
$
\dfrac{{P + R}}{{80}} = \dfrac{Q}{{20}} \\
\Rightarrow \dfrac{{4 + R}}{4} = \dfrac{8}{3} \\
\Rightarrow 12 + 3R = 32 \\
\Rightarrow 3R = 20 \\
\Rightarrow R = \dfrac{{20}}{3}\Omega \\
$
So, the value of the unknown resistance $R$ is $\dfrac{{20}}{3}\Omega $
Therefore, the correct option is D.
Note: The main function of a meter bridge is to find the value of an unknown resistance. Another one of its functions is to compare two different resistances.
Formula used
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$, where $X$ is the known resistance and $R$is the unknown resistance and $l$ is in $cm$.
Complete step by step solution
A meter bridge is an electrical instrument that works on the principle of a Wheatstone bridge. It is used in finding the unknown resistance of a conductor.
It consists of a long wire of $1m$ which is separated into two sections. In the left section we attach the known resistance and in the right section, we attach the unknown resistance. A jockey is present to detect the balance point. The galvanometer indicates the balance point. The balance point is the point on the wire where the galvanometer shows zero deflection.
Let $X$ be the known resistance and $R$ be the unknown resistance.
Then we can write,
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$
Using this formula we can determine the value of the unknown resistance.
The distance between $A$ and $B$ is $100cm$
It is given that $AN = 60cm$
So, $NB$ would be equal to $\left( {100 - 60} \right)cm = 40cm$
From this diagram we can see that,
$
\dfrac{P}{{AN}} = \dfrac{Q}{{NB}} \\
\Rightarrow \dfrac{4}{{60}} = \dfrac{Q}{{40}} \\
\Rightarrow Q = \dfrac{{16}}{6} \\
\Rightarrow Q = \dfrac{8}{3}\Omega \\
$
Now when another resistance $R$ is connected in series with $P$, $AN$ becomes $80cm$
So, the value of the unknown resistance becomes,
$
\dfrac{{P + R}}{{80}} = \dfrac{Q}{{20}} \\
\Rightarrow \dfrac{{4 + R}}{4} = \dfrac{8}{3} \\
\Rightarrow 12 + 3R = 32 \\
\Rightarrow 3R = 20 \\
\Rightarrow R = \dfrac{{20}}{3}\Omega \\
$
So, the value of the unknown resistance $R$ is $\dfrac{{20}}{3}\Omega $
Therefore, the correct option is D.
Note: The main function of a meter bridge is to find the value of an unknown resistance. Another one of its functions is to compare two different resistances.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

