
In a meter bridge experiment resistances are connected as shown in figure. Initially resistance $P = 4\Omega $ and the neutral point $N$ is at $60cm$ from $A$. Now an unknown resistance $R$ is connected in series to $P$ and the new position of the neutral point is at $80cm$ from $A$. The value of unknown resistance $R$ is:
(A) $6\Omega $
(B) $7\Omega $
(C) $\dfrac{{33}}{5}\Omega $
(D) $\dfrac{{20}}{3}\Omega $
Answer
217.8k+ views
Hint: Using the formula of a meter bridge, first calculate the value of the resistance $Q$. Then with this value of $Q$ we can determine the value of the unknown resistance $R$ using the same formula.
Formula used
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$, where $X$ is the known resistance and $R$is the unknown resistance and $l$ is in $cm$.
Complete step by step solution
A meter bridge is an electrical instrument that works on the principle of a Wheatstone bridge. It is used in finding the unknown resistance of a conductor.
It consists of a long wire of $1m$ which is separated into two sections. In the left section we attach the known resistance and in the right section, we attach the unknown resistance. A jockey is present to detect the balance point. The galvanometer indicates the balance point. The balance point is the point on the wire where the galvanometer shows zero deflection.
Let $X$ be the known resistance and $R$ be the unknown resistance.
Then we can write,
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$
Using this formula we can determine the value of the unknown resistance.
The distance between $A$ and $B$ is $100cm$
It is given that $AN = 60cm$
So, $NB$ would be equal to $\left( {100 - 60} \right)cm = 40cm$
From this diagram we can see that,
$
\dfrac{P}{{AN}} = \dfrac{Q}{{NB}} \\
\Rightarrow \dfrac{4}{{60}} = \dfrac{Q}{{40}} \\
\Rightarrow Q = \dfrac{{16}}{6} \\
\Rightarrow Q = \dfrac{8}{3}\Omega \\
$
Now when another resistance $R$ is connected in series with $P$, $AN$ becomes $80cm$
So, the value of the unknown resistance becomes,
$
\dfrac{{P + R}}{{80}} = \dfrac{Q}{{20}} \\
\Rightarrow \dfrac{{4 + R}}{4} = \dfrac{8}{3} \\
\Rightarrow 12 + 3R = 32 \\
\Rightarrow 3R = 20 \\
\Rightarrow R = \dfrac{{20}}{3}\Omega \\
$
So, the value of the unknown resistance $R$ is $\dfrac{{20}}{3}\Omega $
Therefore, the correct option is D.
Note: The main function of a meter bridge is to find the value of an unknown resistance. Another one of its functions is to compare two different resistances.
Formula used
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$, where $X$ is the known resistance and $R$is the unknown resistance and $l$ is in $cm$.
Complete step by step solution
A meter bridge is an electrical instrument that works on the principle of a Wheatstone bridge. It is used in finding the unknown resistance of a conductor.
It consists of a long wire of $1m$ which is separated into two sections. In the left section we attach the known resistance and in the right section, we attach the unknown resistance. A jockey is present to detect the balance point. The galvanometer indicates the balance point. The balance point is the point on the wire where the galvanometer shows zero deflection.
Let $X$ be the known resistance and $R$ be the unknown resistance.
Then we can write,
$\dfrac{X}{l} = \dfrac{R}{{100 - l}}$
Using this formula we can determine the value of the unknown resistance.
The distance between $A$ and $B$ is $100cm$
It is given that $AN = 60cm$
So, $NB$ would be equal to $\left( {100 - 60} \right)cm = 40cm$
From this diagram we can see that,
$
\dfrac{P}{{AN}} = \dfrac{Q}{{NB}} \\
\Rightarrow \dfrac{4}{{60}} = \dfrac{Q}{{40}} \\
\Rightarrow Q = \dfrac{{16}}{6} \\
\Rightarrow Q = \dfrac{8}{3}\Omega \\
$
Now when another resistance $R$ is connected in series with $P$, $AN$ becomes $80cm$
So, the value of the unknown resistance becomes,
$
\dfrac{{P + R}}{{80}} = \dfrac{Q}{{20}} \\
\Rightarrow \dfrac{{4 + R}}{4} = \dfrac{8}{3} \\
\Rightarrow 12 + 3R = 32 \\
\Rightarrow 3R = 20 \\
\Rightarrow R = \dfrac{{20}}{3}\Omega \\
$
So, the value of the unknown resistance $R$ is $\dfrac{{20}}{3}\Omega $
Therefore, the correct option is D.
Note: The main function of a meter bridge is to find the value of an unknown resistance. Another one of its functions is to compare two different resistances.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

