
In a conical pendulum, the axial height of a right circular cone described by the string is $\sqrt 3$ times the radius of the circular path of its bob. The tension in the string is:
A) \[2{\text{ }}mg\]
B) $\sqrt {3mg} $
C) $\dfrac{2}{{\sqrt 3 }}mg$
D) $\dfrac{1}{{\sqrt 3 }}mg$
Answer
230.7k+ views
Hint: A conical pendulum is a string with a mass attached at the end. The mass moves in a horizontal circular path and forms a right circular cone.A right circular cone is a cone where it’s axis is the line meeting the vertex to the midpoint of the radius of the circle. The center point of the base of the circle is joined with the apex of the cone and it forms a right angle.

Formula used:
\[T\cos \theta = mg\]
Here, $T$ = tension created in the string
$r$ =radius of the circular path
$h$ = Axial height of the right circular cone
$l$ = height of the right circular cone that is slightly slant.
$mg$ = weight of the bob
$\theta $= $h$ and the string angle in between them measured in degrees
Complete step by step answer:
Let us consider the given tension diagram.

Here we divide the tension $T$ into two components that is a vertical and a horizontal.
The horizontal component is \[ = Tsin\theta \]
The vertical component \[ = Tcos\theta \].
So, according to the diagram,
\[T\cos \theta = mg\], where \[\cos \theta = \dfrac{h}{L}\]
Given, \[h = \sqrt 3 r\]
\[\therefore L = \sqrt {{r^2} + {{(\sqrt 3 r)}^2}} \] this can also be written as:
\[ \Rightarrow L = \sqrt {{r^2} + 3{r^2}} \]
Or,
\[ \Rightarrow L = \sqrt {4{r^2}} \]
Or,
\[ \Rightarrow L = 2r\]
So from,
\[T\cos \theta = mg\]
\[ \Rightarrow T = \dfrac{{mg}}{{\cos \theta }}\]
\[ \Rightarrow T = \dfrac{{mg}}{{\dfrac{h}{l}}}\]
\[ \Rightarrow T = \dfrac{{mgl}}{h}\]
\[ \Rightarrow T = mg \times \dfrac{{2r}}{{\sqrt 3 r}}\]
\[\therefore T = \dfrac{2}{{\sqrt 3 }}mg\]
Therefore the tension of the string \[T = \dfrac{2}{{\sqrt 3 }}mg\].
Hence the answer is the option (C).
Note: When two or more objects that are in contact, they exert force on each other and this particular force is called a Tension. Tension is the force that acts along a medium of the rope especially where the force is carried. Since the tension does not cause any displacement, the work done in the tension is zero and it acts in the opposite direction of the gravity force.

Formula used:
\[T\cos \theta = mg\]
Here, $T$ = tension created in the string
$r$ =radius of the circular path
$h$ = Axial height of the right circular cone
$l$ = height of the right circular cone that is slightly slant.
$mg$ = weight of the bob
$\theta $= $h$ and the string angle in between them measured in degrees
Complete step by step answer:
Let us consider the given tension diagram.

Here we divide the tension $T$ into two components that is a vertical and a horizontal.
The horizontal component is \[ = Tsin\theta \]
The vertical component \[ = Tcos\theta \].
So, according to the diagram,
\[T\cos \theta = mg\], where \[\cos \theta = \dfrac{h}{L}\]
Given, \[h = \sqrt 3 r\]
\[\therefore L = \sqrt {{r^2} + {{(\sqrt 3 r)}^2}} \] this can also be written as:
\[ \Rightarrow L = \sqrt {{r^2} + 3{r^2}} \]
Or,
\[ \Rightarrow L = \sqrt {4{r^2}} \]
Or,
\[ \Rightarrow L = 2r\]
So from,
\[T\cos \theta = mg\]
\[ \Rightarrow T = \dfrac{{mg}}{{\cos \theta }}\]
\[ \Rightarrow T = \dfrac{{mg}}{{\dfrac{h}{l}}}\]
\[ \Rightarrow T = \dfrac{{mgl}}{h}\]
\[ \Rightarrow T = mg \times \dfrac{{2r}}{{\sqrt 3 r}}\]
\[\therefore T = \dfrac{2}{{\sqrt 3 }}mg\]
Therefore the tension of the string \[T = \dfrac{2}{{\sqrt 3 }}mg\].
Hence the answer is the option (C).
Note: When two or more objects that are in contact, they exert force on each other and this particular force is called a Tension. Tension is the force that acts along a medium of the rope especially where the force is carried. Since the tension does not cause any displacement, the work done in the tension is zero and it acts in the opposite direction of the gravity force.
Recently Updated Pages
Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
Understanding Uniform Acceleration in Physics

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Charging and Discharging of Capacitors

Other Pages
NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 7 Gravitation (2025-26)

Free Radical Substitution and Its Stepwise Mechanism

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions For Class 11 Physics Chapter 6 Systems of Particles and Rotational Motion (2025-26)

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

