
In a collinear collision, a particle with an initial speed ${v_0}$ strikes a stationary particle of the same mass. If the final total kinetic energy is $50\% $ greater than the original kinetic energy, the magnitude of the relative velocity between the two particles, after collision, is?
(A) $\dfrac{{{v_0}}}{2}$
(B) $\dfrac{{{v_0}}}{{\sqrt 2 }}$
(C) $\dfrac{{{v_0}}}{4}$
(D) $\sqrt 2 {v_0}$
Answer
216k+ views
Hint: To solve this question, we need the values of the velocities of the particles after collision. To find the velocities, we can use the conservation of momentum theorem and the kinetic energy formula. The equation of the theorem will give values of velocities and by using that we find the relative velocity between the particles after collision.
Formula Used:
According to Conservation of momentum,
Sum of momentum of particles before collision = Sum of momentum of particles after collision
$ \Rightarrow {m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}$
Where ${m_1}$and ${m_2}$are the masses of the particle involved in collision, ${u_1}$ and ${u_2}$ are the velocities of the particles before collision, ${v_1}$ and ${v_2}$ are the velocities of the particles after collision.
Kinetic energy of a body is $\dfrac{1}{2}m{v^2}$ where $m$ is the mass of the body and $v$ is the velocity of the body.
Complete step by step answer:
In the question it’s given that two particles with same mass but one at a velocity of ${v_0}$ and other at rest (zero velocity) undergo collinear collision.
Let the mass of both the particles be $m$. The initial velocity of the particle before collision is ${v_0}$ . Let the velocities of the particles after collision be ${v_1}$ and ${v_2}$.
Applying the conservation of momentum,
$ \Rightarrow {m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}$
Substituting the values of the mass of the particles and the velocities of the particles before and after collision we get,
$ \Rightarrow m{v_0} = m{v_1} + m{v_2}$
$ \Rightarrow {v_0} = {v_1} + {v_2}$
Let this be equation 1.
Also it’s given in the question the kinetic energy of the particles increases by $50\% $ after collision.
Kinetic energy before collision will be,
$K{E_{beforecollision}} = \dfrac{1}{2}m{v_0}^2$
Kinetic energy after collision will be,
$K{E_{aftercollision}} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}m{v_2}^2$
Using this information,
$ \Rightarrow \dfrac{3}{2}K{E_{beforecollision}} = K{E_{aftercollision}}$
$ \Rightarrow \dfrac{3}{2} \times \dfrac{1}{2}m{v_0}^2 = \left( {\dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}m{v_2}^2} \right)$
$ \Rightarrow \dfrac{3}{2}{v_0}^2 = {v_1}^2 + {v_2}^2$
Let this be equation 2.
After squaring both sides of equation 1, we get
$ \Rightarrow {v_0}^2 = {\left( {{v_1} + {v_2}} \right)^2}$
$ \Rightarrow {v_0}^2 = {v_1}^2 + {v_2}^2 + 2{v_1}{v_2}$
Let this be equation 3.
Substituting the value of ${v_1}^2 + {v_2}^2$ from equation 2 in equation 3 we get
$ \Rightarrow {v_0}^2 = \dfrac{3}{2}{v_0}^2 + 2{v_1}{v_2}$
$ \Rightarrow {v_1}{v_2} = - \dfrac{{{v_0}^2}}{4}$
Let this be equation 4.
We know the relative velocity between particle 1 and 2 is
${\vec v_1} - {\vec v_2} = {\vec v_r}$
$ \Rightarrow {v_r} = \sqrt {{{\left( {{v_1} - {v_2}} \right)}^2}} = \sqrt {{v_1}^2 + {v_1}^2 - 2{v_1}{v_2}} $
Substituting the value of ${v_1}^2 + {v_2}^2$ from equation 2 and ${v_1}{v_2}$from equation 4, we get
$ \Rightarrow {v_r} = \sqrt 2 {v_0}$
Hence, option (D) is the correct option.
Note: To solve questions with more than one variable, we need at least two equations. As the velocities of the individual particles were not given in the question, the relative velocity was found using the velocity of the particle before collision. Also we should be careful while using the formulae for calculating kinetic energy.
Formula Used:
According to Conservation of momentum,
Sum of momentum of particles before collision = Sum of momentum of particles after collision
$ \Rightarrow {m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}$
Where ${m_1}$and ${m_2}$are the masses of the particle involved in collision, ${u_1}$ and ${u_2}$ are the velocities of the particles before collision, ${v_1}$ and ${v_2}$ are the velocities of the particles after collision.
Kinetic energy of a body is $\dfrac{1}{2}m{v^2}$ where $m$ is the mass of the body and $v$ is the velocity of the body.
Complete step by step answer:
In the question it’s given that two particles with same mass but one at a velocity of ${v_0}$ and other at rest (zero velocity) undergo collinear collision.
Let the mass of both the particles be $m$. The initial velocity of the particle before collision is ${v_0}$ . Let the velocities of the particles after collision be ${v_1}$ and ${v_2}$.
Applying the conservation of momentum,
$ \Rightarrow {m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}$
Substituting the values of the mass of the particles and the velocities of the particles before and after collision we get,
$ \Rightarrow m{v_0} = m{v_1} + m{v_2}$
$ \Rightarrow {v_0} = {v_1} + {v_2}$
Let this be equation 1.
Also it’s given in the question the kinetic energy of the particles increases by $50\% $ after collision.
Kinetic energy before collision will be,
$K{E_{beforecollision}} = \dfrac{1}{2}m{v_0}^2$
Kinetic energy after collision will be,
$K{E_{aftercollision}} = \dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}m{v_2}^2$
Using this information,
$ \Rightarrow \dfrac{3}{2}K{E_{beforecollision}} = K{E_{aftercollision}}$
$ \Rightarrow \dfrac{3}{2} \times \dfrac{1}{2}m{v_0}^2 = \left( {\dfrac{1}{2}m{v_1}^2 + \dfrac{1}{2}m{v_2}^2} \right)$
$ \Rightarrow \dfrac{3}{2}{v_0}^2 = {v_1}^2 + {v_2}^2$
Let this be equation 2.
After squaring both sides of equation 1, we get
$ \Rightarrow {v_0}^2 = {\left( {{v_1} + {v_2}} \right)^2}$
$ \Rightarrow {v_0}^2 = {v_1}^2 + {v_2}^2 + 2{v_1}{v_2}$
Let this be equation 3.
Substituting the value of ${v_1}^2 + {v_2}^2$ from equation 2 in equation 3 we get
$ \Rightarrow {v_0}^2 = \dfrac{3}{2}{v_0}^2 + 2{v_1}{v_2}$
$ \Rightarrow {v_1}{v_2} = - \dfrac{{{v_0}^2}}{4}$
Let this be equation 4.
We know the relative velocity between particle 1 and 2 is
${\vec v_1} - {\vec v_2} = {\vec v_r}$
$ \Rightarrow {v_r} = \sqrt {{{\left( {{v_1} - {v_2}} \right)}^2}} = \sqrt {{v_1}^2 + {v_1}^2 - 2{v_1}{v_2}} $
Substituting the value of ${v_1}^2 + {v_2}^2$ from equation 2 and ${v_1}{v_2}$from equation 4, we get
$ \Rightarrow {v_r} = \sqrt 2 {v_0}$
Hence, option (D) is the correct option.
Note: To solve questions with more than one variable, we need at least two equations. As the velocities of the individual particles were not given in the question, the relative velocity was found using the velocity of the particle before collision. Also we should be careful while using the formulae for calculating kinetic energy.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Atomic Structure Explained: Key Concepts for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

