Answer
Verified
81k+ views
Hint: To solve this question, we need to use Faraday's equation of the emf induced in a coil which is subjected to the changing magnetic flux. Then using the Ohm’s law, we can get the relation between the current and the rate of change in flux. On modifying that relation, we can get the expression for the change in flux.
Formula used: The formulae used in solving this question are given by
$e = - \dfrac{{d\varphi }}{{dt}}$, here $e$ is the emf induced in a coil, $\theta $ is the flux through the coil, and $t$ is the time.
$V = IR$, here $V$ is the voltage, $I$ is the current, and $R$ is the resistance.
Complete step-by-step solution:
We know from the Faraday’s law that the emf induced within a coil due to the changing magnetic flux through it is given by the equation
$e = - \dfrac{{d\varphi }}{{dt}}$
Taking the magnitude of the emf, we get
$e = \dfrac{{d\varphi }}{{dt}}$..................(1)
Now, from the Ohm’s law we know that
$V = IR$
Since the voltage across the coil will be equal to the emf induced across the coil, we substitute $V = e$ above to get
$e = IR$
From (1)
\[\dfrac{{d\varphi }}{{dt}} = IR\]
\[d\varphi = IRdt\]
Integrating both the sides, we get
\[\int {d\varphi } = \int {IRdt} \]
\[ \Rightarrow \Delta \varphi = \int {IRdt} \]
Since the radius of the coil is constant, we have
\[\Delta \varphi = R\int {Idt} \].....................(2)
We know that integration of a dependent variable with respect to the independent variable is basically the area under the curve of the dependent variable. So the value of the integrand in the above relation will be equal to the area of the triangle in the figure given in the question. We know that the area of a triangle is given by
$A = \dfrac{1}{2} \times b \times h$
According to the figure given, we have $A = \int {Idt} $, $b = 0.1s$, and $h = 4{\text{A}}$. Substituting these above we get
$\int {Idt} = \dfrac{1}{2} \times 0.1 \times 4$
$ \Rightarrow \int {Idt} = 0.2$.....................(3)
Putting (3) in (2), we get the magnitude of the emf induced as
\[\Delta \varphi = 0.2R\]
According to the question, the radius of the coil is $R = 10\Omega $. Substituting this above, we finally get
\[\Delta \varphi = 2{\text{ Wb}}\]
Thus, the magnitude of change in flux through the coil in Weber is equal to $2$.
Hence, the correct answer is option A.
Note: We could also find out the equation of the line for integrating it between the limits given in the figure. But that would have involved more calculations. If the curve was not a straight line, then we would have to perform integration by finding the equation of the curve.
Formula used: The formulae used in solving this question are given by
$e = - \dfrac{{d\varphi }}{{dt}}$, here $e$ is the emf induced in a coil, $\theta $ is the flux through the coil, and $t$ is the time.
$V = IR$, here $V$ is the voltage, $I$ is the current, and $R$ is the resistance.
Complete step-by-step solution:
We know from the Faraday’s law that the emf induced within a coil due to the changing magnetic flux through it is given by the equation
$e = - \dfrac{{d\varphi }}{{dt}}$
Taking the magnitude of the emf, we get
$e = \dfrac{{d\varphi }}{{dt}}$..................(1)
Now, from the Ohm’s law we know that
$V = IR$
Since the voltage across the coil will be equal to the emf induced across the coil, we substitute $V = e$ above to get
$e = IR$
From (1)
\[\dfrac{{d\varphi }}{{dt}} = IR\]
\[d\varphi = IRdt\]
Integrating both the sides, we get
\[\int {d\varphi } = \int {IRdt} \]
\[ \Rightarrow \Delta \varphi = \int {IRdt} \]
Since the radius of the coil is constant, we have
\[\Delta \varphi = R\int {Idt} \].....................(2)
We know that integration of a dependent variable with respect to the independent variable is basically the area under the curve of the dependent variable. So the value of the integrand in the above relation will be equal to the area of the triangle in the figure given in the question. We know that the area of a triangle is given by
$A = \dfrac{1}{2} \times b \times h$
According to the figure given, we have $A = \int {Idt} $, $b = 0.1s$, and $h = 4{\text{A}}$. Substituting these above we get
$\int {Idt} = \dfrac{1}{2} \times 0.1 \times 4$
$ \Rightarrow \int {Idt} = 0.2$.....................(3)
Putting (3) in (2), we get the magnitude of the emf induced as
\[\Delta \varphi = 0.2R\]
According to the question, the radius of the coil is $R = 10\Omega $. Substituting this above, we finally get
\[\Delta \varphi = 2{\text{ Wb}}\]
Thus, the magnitude of change in flux through the coil in Weber is equal to $2$.
Hence, the correct answer is option A.
Note: We could also find out the equation of the line for integrating it between the limits given in the figure. But that would have involved more calculations. If the curve was not a straight line, then we would have to perform integration by finding the equation of the curve.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The value of intlimits02pi max left sin xcos x right class 12 maths JEE_Main
Which of the following is not a redox reaction A CaCO3 class 11 chemistry JEE_Main
Man A sitting in a car moving with a speed of 54 kmhr class 11 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main