
In a coil of resistance $10\Omega $, the induced current developed by changing magnetic flux through it, is shown in figure as a function of time. The magnitude of change in flux through the coil in Weber is-

(A) $2$
(B) $6$
(C) $4$
(D) $8$
Answer
216.3k+ views
Hint: To solve this question, we need to use Faraday's equation of the emf induced in a coil which is subjected to the changing magnetic flux. Then using the Ohm’s law, we can get the relation between the current and the rate of change in flux. On modifying that relation, we can get the expression for the change in flux.
Formula used: The formulae used in solving this question are given by
$e = - \dfrac{{d\varphi }}{{dt}}$, here $e$ is the emf induced in a coil, $\theta $ is the flux through the coil, and $t$ is the time.
$V = IR$, here $V$ is the voltage, $I$ is the current, and $R$ is the resistance.
Complete step-by-step solution:
We know from the Faraday’s law that the emf induced within a coil due to the changing magnetic flux through it is given by the equation
$e = - \dfrac{{d\varphi }}{{dt}}$
Taking the magnitude of the emf, we get
$e = \dfrac{{d\varphi }}{{dt}}$..................(1)
Now, from the Ohm’s law we know that
$V = IR$
Since the voltage across the coil will be equal to the emf induced across the coil, we substitute $V = e$ above to get
$e = IR$
From (1)
\[\dfrac{{d\varphi }}{{dt}} = IR\]
\[d\varphi = IRdt\]
Integrating both the sides, we get
\[\int {d\varphi } = \int {IRdt} \]
\[ \Rightarrow \Delta \varphi = \int {IRdt} \]
Since the radius of the coil is constant, we have
\[\Delta \varphi = R\int {Idt} \].....................(2)
We know that integration of a dependent variable with respect to the independent variable is basically the area under the curve of the dependent variable. So the value of the integrand in the above relation will be equal to the area of the triangle in the figure given in the question. We know that the area of a triangle is given by
$A = \dfrac{1}{2} \times b \times h$
According to the figure given, we have $A = \int {Idt} $, $b = 0.1s$, and $h = 4{\text{A}}$. Substituting these above we get
$\int {Idt} = \dfrac{1}{2} \times 0.1 \times 4$
$ \Rightarrow \int {Idt} = 0.2$.....................(3)
Putting (3) in (2), we get the magnitude of the emf induced as
\[\Delta \varphi = 0.2R\]
According to the question, the radius of the coil is $R = 10\Omega $. Substituting this above, we finally get
\[\Delta \varphi = 2{\text{ Wb}}\]
Thus, the magnitude of change in flux through the coil in Weber is equal to $2$.
Hence, the correct answer is option A.
Note: We could also find out the equation of the line for integrating it between the limits given in the figure. But that would have involved more calculations. If the curve was not a straight line, then we would have to perform integration by finding the equation of the curve.
Formula used: The formulae used in solving this question are given by
$e = - \dfrac{{d\varphi }}{{dt}}$, here $e$ is the emf induced in a coil, $\theta $ is the flux through the coil, and $t$ is the time.
$V = IR$, here $V$ is the voltage, $I$ is the current, and $R$ is the resistance.
Complete step-by-step solution:
We know from the Faraday’s law that the emf induced within a coil due to the changing magnetic flux through it is given by the equation
$e = - \dfrac{{d\varphi }}{{dt}}$
Taking the magnitude of the emf, we get
$e = \dfrac{{d\varphi }}{{dt}}$..................(1)
Now, from the Ohm’s law we know that
$V = IR$
Since the voltage across the coil will be equal to the emf induced across the coil, we substitute $V = e$ above to get
$e = IR$
From (1)
\[\dfrac{{d\varphi }}{{dt}} = IR\]
\[d\varphi = IRdt\]
Integrating both the sides, we get
\[\int {d\varphi } = \int {IRdt} \]
\[ \Rightarrow \Delta \varphi = \int {IRdt} \]
Since the radius of the coil is constant, we have
\[\Delta \varphi = R\int {Idt} \].....................(2)
We know that integration of a dependent variable with respect to the independent variable is basically the area under the curve of the dependent variable. So the value of the integrand in the above relation will be equal to the area of the triangle in the figure given in the question. We know that the area of a triangle is given by
$A = \dfrac{1}{2} \times b \times h$
According to the figure given, we have $A = \int {Idt} $, $b = 0.1s$, and $h = 4{\text{A}}$. Substituting these above we get
$\int {Idt} = \dfrac{1}{2} \times 0.1 \times 4$
$ \Rightarrow \int {Idt} = 0.2$.....................(3)
Putting (3) in (2), we get the magnitude of the emf induced as
\[\Delta \varphi = 0.2R\]
According to the question, the radius of the coil is $R = 10\Omega $. Substituting this above, we finally get
\[\Delta \varphi = 2{\text{ Wb}}\]
Thus, the magnitude of change in flux through the coil in Weber is equal to $2$.
Hence, the correct answer is option A.
Note: We could also find out the equation of the line for integrating it between the limits given in the figure. But that would have involved more calculations. If the curve was not a straight line, then we would have to perform integration by finding the equation of the curve.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

