
In a CO molecule, the distance between C (mass=12 amu) and O (mass=16 amu) is;
Where 1 amu= $\dfrac{5}{3} \times {10^{ - 27}}kg$
(A) $2.4 \times {10^{ - 10}}m$
(B) $1.9 \times {10^{ - 10}}m$
(C) $1.3 \times {10^{ - 10}}m$
(D) $4.4 \times {10^{ - 11}}m$
Answer
135k+ views
Hint: the moment of inertia of the molecule CO is${I_{CO}} = 1.8 \times {10^{ - 47}}kg{m^2}$. The moment of inertia about the axis passing through the center of mass will help us get the distance between the two atoms.
Complete solution:
The CO molecule consists of two atoms of different masses. They are C (carbon) and O (oxygen). This tells that the center of mass is not in the middle but somewhere other than the midpoint.
Center of mass of a system of two or masses is the point at which all mass is concentrated, this assumption can be made. It is given by;
Here, $\bar x$ is the x coordinate of the center of mass. ${m_1},{m_2},....$ are masses of individual elements and ${x_1},{x_2},....$ are their positions with respect to center of mass respectively.
Hence in this case we first find the distance of both the atoms from the center of mass, the distances can be given by;
${x_C} = \dfrac{{{m_O}d}}{{{m_C} + {m_O}}},{x_O} = \dfrac{{{m_C}d}}{{{m_C} + {m_O}}}$ here d is the total distance between the atoms.
So, ${x_C} = \dfrac{{16d}}{{12 + 16}} = \dfrac{{16d}}{{28}}$ (equation: 1)
Also, ${x_o} = \dfrac{{12d}}{{12 + 16}} = \dfrac{{12d}}{{28}}$ (equation: 2)
Now if we talk about the moment of inertia about the axis passing through the center of mass, we know that by definition moment of inertia about the axis pass through center will be given by;
${I_{CO}} = {m_C}{r_C} + {m_O}{r_O}$
Substituting the value of equation: 1 and equation: 2 in the above equation we get
${I_{CO}} = 12\left( {\dfrac{{16d}}{{28}}} \right) + 16\left( {\dfrac{{12d}}{{28}}} \right)$
${I_{CO}} = \dfrac{{96d}}{7}$
Now this is amu-square meter, we need to convert it to kg-square meter.
We are given that, $1amu = \dfrac{5}{3} \times {10^{ - 27}}kg$.
So, ${I_{CO}} = \dfrac{{96d}}{7} \times \dfrac{5}{3} \times {10^{ - 27}}kg{m^2}$.
Also we know it as a fact that ${I_{CO}} = 1.8 \times {10^{ - 47}}$
Hence, ${I_{CO}} = \dfrac{{96d}}{7} \times \dfrac{5}{3} \times {10^{ - 27}} = 1.8 \times {10^{ - 47}}$
Solving the above equation for d we get;
$d = 1.3 \times {10^{ - 10}}m$
Hence option C is correct.
Note:(1) We assume that these distances are measured from the center of the atom. So, these measurements consist of the atomic radii as well.
(2) It is logical to consider the measurements from the atomic center point because the atom's mass is concentrated at that point.
Complete solution:
The CO molecule consists of two atoms of different masses. They are C (carbon) and O (oxygen). This tells that the center of mass is not in the middle but somewhere other than the midpoint.
Center of mass of a system of two or masses is the point at which all mass is concentrated, this assumption can be made. It is given by;
Here, $\bar x$ is the x coordinate of the center of mass. ${m_1},{m_2},....$ are masses of individual elements and ${x_1},{x_2},....$ are their positions with respect to center of mass respectively.
Hence in this case we first find the distance of both the atoms from the center of mass, the distances can be given by;
${x_C} = \dfrac{{{m_O}d}}{{{m_C} + {m_O}}},{x_O} = \dfrac{{{m_C}d}}{{{m_C} + {m_O}}}$ here d is the total distance between the atoms.
So, ${x_C} = \dfrac{{16d}}{{12 + 16}} = \dfrac{{16d}}{{28}}$ (equation: 1)
Also, ${x_o} = \dfrac{{12d}}{{12 + 16}} = \dfrac{{12d}}{{28}}$ (equation: 2)
Now if we talk about the moment of inertia about the axis passing through the center of mass, we know that by definition moment of inertia about the axis pass through center will be given by;
${I_{CO}} = {m_C}{r_C} + {m_O}{r_O}$
Substituting the value of equation: 1 and equation: 2 in the above equation we get
${I_{CO}} = 12\left( {\dfrac{{16d}}{{28}}} \right) + 16\left( {\dfrac{{12d}}{{28}}} \right)$
${I_{CO}} = \dfrac{{96d}}{7}$
Now this is amu-square meter, we need to convert it to kg-square meter.
We are given that, $1amu = \dfrac{5}{3} \times {10^{ - 27}}kg$.
So, ${I_{CO}} = \dfrac{{96d}}{7} \times \dfrac{5}{3} \times {10^{ - 27}}kg{m^2}$.
Also we know it as a fact that ${I_{CO}} = 1.8 \times {10^{ - 47}}$
Hence, ${I_{CO}} = \dfrac{{96d}}{7} \times \dfrac{5}{3} \times {10^{ - 27}} = 1.8 \times {10^{ - 47}}$
Solving the above equation for d we get;
$d = 1.3 \times {10^{ - 10}}m$
Hence option C is correct.
Note:(1) We assume that these distances are measured from the center of the atom. So, these measurements consist of the atomic radii as well.
(2) It is logical to consider the measurements from the atomic center point because the atom's mass is concentrated at that point.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Displacement-Time Graph and Velocity-Time Graph for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

JEE Main Chemistry Question Paper with Answer Keys and Solutions
