
In a ballistics demonstration, a police officer fires a bullet of mass $50.0g$ with speed $200m{s^ {- 1}} $ on soft plywood of thickness $2.0cm$. The bullet emerges with only $10\% $ of its kinetic energy. What is the emergent speed of the bullet?
Answer
225.9k+ views
Hint: The kinetic energy (KE) of an object is the energy it possesses because of its motion. It is defined as the work necessary to accelerate from rest to the specified velocity of a body of a given mass. Having obtained this energy through its acceleration, until its speed varies, the body retains this kinetic energy.
Complete step by step solution:
Kinetic energy-energy type which is caused by an entity or a particle's movement. The mass accelerates and thereby gains kinetic energy if work is performed on a mass with the help of a net force. Kinetic energy is one of the properties of a moving object or particle and depends on its movement as well as mass. The movement type can be translation (or movement along a route between places), rotation around an axis, vibration or some mixture of motions.
A body's translational kinetic energy is equal to half its mass $m$, and its velocity, $v$ or $\dfrac {1} {2} m {v^2}.$
This formula is only valid for low to relatively high speeds; it gives too small values for very high speed particles. As an object's speed exceeds light, it changes its mass and it must be subjected to the rules of relative efficiency. Relativistic kinetic energy is analogous to an increase in particle mass in the remainder compounded by the square of light velocity.
The bullet emerges with only $10\% $ of its kinetic energy.
Therefore,
$\dfrac {1} {2} m {v^2} = 0.1(K.E) $
Where, $m$ is mass, $v$ is velocity and $K.E$ is kinetic energy.
$ = 0.1 \times \dfrac{1}{2}m{u^2}$
It is given that $m = 50g$or $m = 50 \times {10^ {- 3}} kg$
$v = 200m{s^ {- 1}} $
Therefore, from the above equations,
$\dfrac {1} {2} \times 50 \times {10^ {- 3}} \times {u^2} = 0.1 \times [\dfrac{1}{2} \times 50 \times {10^ {- 3}} \times {20^2}] $
${u^2} = 0.1 \times {200^2} $
$u = 20\sqrt {10} m{s^ {- 1}} $
The emergence speed of bullet is $20\sqrt {10} m{s^ {- 1}}.$
Note: The cumulative kinetic energy of a body or mechanism equals the sum of the kinetic energies of each movement form.
Complete step by step solution:
Kinetic energy-energy type which is caused by an entity or a particle's movement. The mass accelerates and thereby gains kinetic energy if work is performed on a mass with the help of a net force. Kinetic energy is one of the properties of a moving object or particle and depends on its movement as well as mass. The movement type can be translation (or movement along a route between places), rotation around an axis, vibration or some mixture of motions.
A body's translational kinetic energy is equal to half its mass $m$, and its velocity, $v$ or $\dfrac {1} {2} m {v^2}.$
This formula is only valid for low to relatively high speeds; it gives too small values for very high speed particles. As an object's speed exceeds light, it changes its mass and it must be subjected to the rules of relative efficiency. Relativistic kinetic energy is analogous to an increase in particle mass in the remainder compounded by the square of light velocity.
The bullet emerges with only $10\% $ of its kinetic energy.
Therefore,
$\dfrac {1} {2} m {v^2} = 0.1(K.E) $
Where, $m$ is mass, $v$ is velocity and $K.E$ is kinetic energy.
$ = 0.1 \times \dfrac{1}{2}m{u^2}$
It is given that $m = 50g$or $m = 50 \times {10^ {- 3}} kg$
$v = 200m{s^ {- 1}} $
Therefore, from the above equations,
$\dfrac {1} {2} \times 50 \times {10^ {- 3}} \times {u^2} = 0.1 \times [\dfrac{1}{2} \times 50 \times {10^ {- 3}} \times {20^2}] $
${u^2} = 0.1 \times {200^2} $
$u = 20\sqrt {10} m{s^ {- 1}} $
The emergence speed of bullet is $20\sqrt {10} m{s^ {- 1}}.$
Note: The cumulative kinetic energy of a body or mechanism equals the sum of the kinetic energies of each movement form.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

