
If \[\gamma \] be the ratio of specific heats of a perfect gas, the number of degrees of freedom of a molecule of the gas is
A) $\dfrac{{25}}{2}(\gamma - 1)$
B) $\dfrac{{3\gamma - 1}}{{2\gamma - 1}}$
C) $\dfrac{2}{{\gamma - 1}}$
D) $\dfrac{9}{2}\left( {\gamma - 1} \right)$
Answer
124.8k+ views
Hint: The ratio of specific heat at constant pressure and the specific heat at constant volume is denoted by \[\gamma \]. Difference between specific heat at constant pressure and that at constant volume is the same as universal gas constant. Also, degrees of freedom of a molecule of the gas is proportional to its specific heat at constant volume.
Formula Used:
Definition of Heat capacity ratio:
\[\gamma = \dfrac{{{C_P}}}{{{C_V}}}\] (1)
Where,
\[\gamma \] is the heat capacity ratio,
\[{C_P}\] is the specific heat capacity at constant pressure,
\[{C_V}\] is the specific heat capacity at constant volume.
Relation between specific heat capacities and universal gas constant is given as:
\[{C_P} - {C_V} = R\] (2)
Where,
R is the universal gas constant.
The relationship between degrees of freedom and specific heat capacity at constant volume is known as:
\[{C_V} = \dfrac{{nR}}{2}\] (3)
Where,
n is the no. of degrees of freedom.
Complete step by step answer:
Step 1
First, rewrite the expression of eq.(2) to get an expression for \[{C_P}\]:
\[
{C_P} - {C_V} = R \\
\therefore {C_P} = {C_V} + R \\
\] (4)
Step 2
Now, use the eq.(3) in eq.(4) to get the form of \[{C_P}\] as:
\[{C_P} = \dfrac{{nR}}{2} + R = \dfrac{{nR + 2R}}{2} = \left( {\dfrac{{n + 2}}{2}} \right)R\] (5)
Step 3
Substitute the value of \[{C_P}\] from eq.(5) and value of \[{C_V}\]from eq.(3) in eq.(1) to get the value of n as:
\[
\gamma = \dfrac{{\left( {\tfrac{{n + 2}}{2}} \right)R}}{{\tfrac{{nR}}{2}}} \\
\Rightarrow \gamma = \dfrac{{n + 2}}{n} \\
\Rightarrow \gamma = 1 + \dfrac{2}{n} \\
\Rightarrow \dfrac{2}{n} = \gamma - 1 \\
\therefore n = \dfrac{2}{{\gamma - 1}} \\
\]
Hence, you will get the relationship between n and \[\gamma \].
Final answer:
The number of degrees of freedom of a molecule of the gas is (c) \[\dfrac{2}{{\gamma - 1}}\].
Note: This problem can be done in a tricky manner. If you just follow the values of \[\gamma \]and degrees of freedom then you will notice that as the number of atoms increases in a molecule degrees of freedom keeps increasing and \[\gamma \] keeps decreasing. So, clearly they are inversely related. Hence, in this question only possible inverse relation is given by option (c) which is the correct answer.
Formula Used:
Definition of Heat capacity ratio:
\[\gamma = \dfrac{{{C_P}}}{{{C_V}}}\] (1)
Where,
\[\gamma \] is the heat capacity ratio,
\[{C_P}\] is the specific heat capacity at constant pressure,
\[{C_V}\] is the specific heat capacity at constant volume.
Relation between specific heat capacities and universal gas constant is given as:
\[{C_P} - {C_V} = R\] (2)
Where,
R is the universal gas constant.
The relationship between degrees of freedom and specific heat capacity at constant volume is known as:
\[{C_V} = \dfrac{{nR}}{2}\] (3)
Where,
n is the no. of degrees of freedom.
Complete step by step answer:
Step 1
First, rewrite the expression of eq.(2) to get an expression for \[{C_P}\]:
\[
{C_P} - {C_V} = R \\
\therefore {C_P} = {C_V} + R \\
\] (4)
Step 2
Now, use the eq.(3) in eq.(4) to get the form of \[{C_P}\] as:
\[{C_P} = \dfrac{{nR}}{2} + R = \dfrac{{nR + 2R}}{2} = \left( {\dfrac{{n + 2}}{2}} \right)R\] (5)
Step 3
Substitute the value of \[{C_P}\] from eq.(5) and value of \[{C_V}\]from eq.(3) in eq.(1) to get the value of n as:
\[
\gamma = \dfrac{{\left( {\tfrac{{n + 2}}{2}} \right)R}}{{\tfrac{{nR}}{2}}} \\
\Rightarrow \gamma = \dfrac{{n + 2}}{n} \\
\Rightarrow \gamma = 1 + \dfrac{2}{n} \\
\Rightarrow \dfrac{2}{n} = \gamma - 1 \\
\therefore n = \dfrac{2}{{\gamma - 1}} \\
\]
Hence, you will get the relationship between n and \[\gamma \].
Final answer:
The number of degrees of freedom of a molecule of the gas is (c) \[\dfrac{2}{{\gamma - 1}}\].
Note: This problem can be done in a tricky manner. If you just follow the values of \[\gamma \]and degrees of freedom then you will notice that as the number of atoms increases in a molecule degrees of freedom keeps increasing and \[\gamma \] keeps decreasing. So, clearly they are inversely related. Hence, in this question only possible inverse relation is given by option (c) which is the correct answer.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
