
If\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\],\[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]and \[{(A + B)^2} = {A^2} + {B^2}\] then the value of a and b are
A. \[a = 4,b = 1\]
B. \[a = 1,b = 4\]
C. \[a = 0,b = 4\]
D. \[a = 2,b = 4\]
Answer
163.5k+ views
Hint: To solve the given problem we first find the value of\[{(A + B)^2}\] and \[{A^2} + {B^2}\]from matrices A and B. Since \[{(A + B)^2} = {A^2} + {B^2}\], we equate the matrices thus obtained and hence equate the corresponding elements of the two matrices to find the value of a and b.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
