
If\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\],\[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]and \[{(A + B)^2} = {A^2} + {B^2}\] then the value of a and b are
A. \[a = 4,b = 1\]
B. \[a = 1,b = 4\]
C. \[a = 0,b = 4\]
D. \[a = 2,b = 4\]
Answer
162k+ views
Hint: To solve the given problem we first find the value of\[{(A + B)^2}\] and \[{A^2} + {B^2}\]from matrices A and B. Since \[{(A + B)^2} = {A^2} + {B^2}\], we equate the matrices thus obtained and hence equate the corresponding elements of the two matrices to find the value of a and b.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
