
If\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\],\[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]and \[{(A + B)^2} = {A^2} + {B^2}\] then the value of a and b are
A. \[a = 4,b = 1\]
B. \[a = 1,b = 4\]
C. \[a = 0,b = 4\]
D. \[a = 2,b = 4\]
Answer
232.8k+ views
Hint: To solve the given problem we first find the value of\[{(A + B)^2}\] and \[{A^2} + {B^2}\]from matrices A and B. Since \[{(A + B)^2} = {A^2} + {B^2}\], we equate the matrices thus obtained and hence equate the corresponding elements of the two matrices to find the value of a and b.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

