
If\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\],\[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]and \[{(A + B)^2} = {A^2} + {B^2}\] then the value of a and b are
A. \[a = 4,b = 1\]
B. \[a = 1,b = 4\]
C. \[a = 0,b = 4\]
D. \[a = 2,b = 4\]
Answer
216.3k+ views
Hint: To solve the given problem we first find the value of\[{(A + B)^2}\] and \[{A^2} + {B^2}\]from matrices A and B. Since \[{(A + B)^2} = {A^2} + {B^2}\], we equate the matrices thus obtained and hence equate the corresponding elements of the two matrices to find the value of a and b.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right]\]and \[B = \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]
On adding the two matrices we get,
\[A + B = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right]\]
On squaring we get,
\[{(A + B)^2} = \left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{1 + a}&0 \\
{2 + b}&{ - 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + {a^2} + 2a}&0 \\
{2 + 2a + b + ab - 4 - 2b}&4
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right]\]
On evaluating \[{A^2} + {B^2}\]we get,
\[{A^2} + {B^2} = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
2&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
a&1 \\
b&{ - 1}
\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
0&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{a^2} + b}&{a - 1} \\
{ab - b}&{b + 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
We are given that \[{(A + B)^2} = {A^2} + {B^2}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + 2a + 1}&0 \\
{2a - b + ab - 2}&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{a^2} + b - 1}&{a - 1} \\
{ab - b}&b
\end{array}} \right]\]
Equating the corresponding elements, we get
\[{a^2} + 2a + 1 = {a^2} + b - 1\]
\[ \Rightarrow 2a - b = - 2\]…(1)
\[a - 1 = 0\]
\[ \Rightarrow a = 1\]…(2)
\[2a - b + ab - 2 = ab - b\]
\[ \Rightarrow 2a - 2 = 0\]…(3)
\[b = 4\]…(4)
\[a = 1,b = 4\] satisfies all the four equations (1),(2),(3) and (4).
Hence \[a = 1,b = 4\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix after matrix multiplication.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
Amortization Calculator – Loan Schedule, EMI & Table

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

