
If $z$ is a complex number in the argand plane, then the equation $\left| z-2 \right|+\left| z+2 \right|=8$ represents
A. Parabola
B. Ellipse
C. Hyperbola
D. Circle
Answer
163.5k+ views
Hint: In this question, we are to find the type of the given equation. The given options are the curves, by using the eccentricity of the curve. Depending on the eccentricity, the given equation is named.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
The eccentricity is calculated by the intercepts of the axes,
$e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a}$
If the eccentricity $e=1$, then the curve is a parabola
If the eccentricity $e<1$, then the curve is an ellipse
If the eccentricity $e>1$, then the curve is a hyperbola
Complete step by step solution: The given equation is $\left| z-2 \right|+\left| z+2 \right|=8$
We know that, $z=x+iy$
On substituting,
\[\begin{align}
& \left| z-2 \right|+\left| z+2 \right|=8 \\
& \left| x+iy-2 \right|+\left| x+iy+2 \right|=8 \\
& \left| (x-2)+iy \right|+\left| (x+2)+iy \right|=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+2)}^{2}}+{{y}^{2}}}=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}=8-\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
Squaring on both sides, we get
\[\begin{align}
& {{(x-2)}^{2}}+{{y}^{2}}=64+{{(x+2)}^{2}}+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{x}^{2}}-4x+4+{{y}^{2}}=64+{{x}^{2}}+4x+4+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -4x-4x=64-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -8x-64=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
\[\begin{align}
& -8(x+8)=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& (x+8)=2\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{(x+8)}^{2}}=4{{(x+2)}^{2}}+4{{y}^{2}} \\
& {{x}^{2}}+16x+64=4({{x}^{2}}+4x+4)+4{{y}^{2}} \\
\end{align}\]
\[\begin{align}
& {{x}^{2}}+16x+64=4{{x}^{2}}+16x+16+4{{y}^{2}} \\
& 3{{x}^{2}}+4{{y}^{2}}=48 \\
& \dfrac{3{{x}^{2}}}{48}+\dfrac{4{{y}^{2}}}{48}=1 \\
& \dfrac{{{x}^{2}}}{16}+\dfrac{{{y}^{2}}}{12}=1 \\
\end{align}\]
Here the intercepts are $a=16,b=12$.
Since $a>b$, the eccentricity is
$\begin{align}
& e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a} \\
& \text{ }=\dfrac{\sqrt{{{(16)}^{2}}-{{(12)}^{2}}}}{16} \\
& \text{ }=\dfrac{\sqrt{112}}{16}<1 \\
\end{align}$
Since the eccentricity $e<1$, the given equation represents an ellipse.
Thus, Option (B) is correct.
Note: Here we need to remember the eccentricity is to be calculated in order to find the type of the curve.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
The eccentricity is calculated by the intercepts of the axes,
$e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a}$
If the eccentricity $e=1$, then the curve is a parabola
If the eccentricity $e<1$, then the curve is an ellipse
If the eccentricity $e>1$, then the curve is a hyperbola
Complete step by step solution: The given equation is $\left| z-2 \right|+\left| z+2 \right|=8$
We know that, $z=x+iy$
On substituting,
\[\begin{align}
& \left| z-2 \right|+\left| z+2 \right|=8 \\
& \left| x+iy-2 \right|+\left| x+iy+2 \right|=8 \\
& \left| (x-2)+iy \right|+\left| (x+2)+iy \right|=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+2)}^{2}}+{{y}^{2}}}=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}=8-\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
Squaring on both sides, we get
\[\begin{align}
& {{(x-2)}^{2}}+{{y}^{2}}=64+{{(x+2)}^{2}}+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{x}^{2}}-4x+4+{{y}^{2}}=64+{{x}^{2}}+4x+4+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -4x-4x=64-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -8x-64=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
\[\begin{align}
& -8(x+8)=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& (x+8)=2\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{(x+8)}^{2}}=4{{(x+2)}^{2}}+4{{y}^{2}} \\
& {{x}^{2}}+16x+64=4({{x}^{2}}+4x+4)+4{{y}^{2}} \\
\end{align}\]
\[\begin{align}
& {{x}^{2}}+16x+64=4{{x}^{2}}+16x+16+4{{y}^{2}} \\
& 3{{x}^{2}}+4{{y}^{2}}=48 \\
& \dfrac{3{{x}^{2}}}{48}+\dfrac{4{{y}^{2}}}{48}=1 \\
& \dfrac{{{x}^{2}}}{16}+\dfrac{{{y}^{2}}}{12}=1 \\
\end{align}\]
Here the intercepts are $a=16,b=12$.
Since $a>b$, the eccentricity is
$\begin{align}
& e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a} \\
& \text{ }=\dfrac{\sqrt{{{(16)}^{2}}-{{(12)}^{2}}}}{16} \\
& \text{ }=\dfrac{\sqrt{112}}{16}<1 \\
\end{align}$
Since the eccentricity $e<1$, the given equation represents an ellipse.
Thus, Option (B) is correct.
Note: Here we need to remember the eccentricity is to be calculated in order to find the type of the curve.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
