
If $z$ is a complex number in the argand plane, then the equation $\left| z-2 \right|+\left| z+2 \right|=8$ represents
A. Parabola
B. Ellipse
C. Hyperbola
D. Circle
Answer
216k+ views
Hint: In this question, we are to find the type of the given equation. The given options are the curves, by using the eccentricity of the curve. Depending on the eccentricity, the given equation is named.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
The eccentricity is calculated by the intercepts of the axes,
$e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a}$
If the eccentricity $e=1$, then the curve is a parabola
If the eccentricity $e<1$, then the curve is an ellipse
If the eccentricity $e>1$, then the curve is a hyperbola
Complete step by step solution: The given equation is $\left| z-2 \right|+\left| z+2 \right|=8$
We know that, $z=x+iy$
On substituting,
\[\begin{align}
& \left| z-2 \right|+\left| z+2 \right|=8 \\
& \left| x+iy-2 \right|+\left| x+iy+2 \right|=8 \\
& \left| (x-2)+iy \right|+\left| (x+2)+iy \right|=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+2)}^{2}}+{{y}^{2}}}=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}=8-\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
Squaring on both sides, we get
\[\begin{align}
& {{(x-2)}^{2}}+{{y}^{2}}=64+{{(x+2)}^{2}}+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{x}^{2}}-4x+4+{{y}^{2}}=64+{{x}^{2}}+4x+4+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -4x-4x=64-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -8x-64=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
\[\begin{align}
& -8(x+8)=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& (x+8)=2\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{(x+8)}^{2}}=4{{(x+2)}^{2}}+4{{y}^{2}} \\
& {{x}^{2}}+16x+64=4({{x}^{2}}+4x+4)+4{{y}^{2}} \\
\end{align}\]
\[\begin{align}
& {{x}^{2}}+16x+64=4{{x}^{2}}+16x+16+4{{y}^{2}} \\
& 3{{x}^{2}}+4{{y}^{2}}=48 \\
& \dfrac{3{{x}^{2}}}{48}+\dfrac{4{{y}^{2}}}{48}=1 \\
& \dfrac{{{x}^{2}}}{16}+\dfrac{{{y}^{2}}}{12}=1 \\
\end{align}\]
Here the intercepts are $a=16,b=12$.
Since $a>b$, the eccentricity is
$\begin{align}
& e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a} \\
& \text{ }=\dfrac{\sqrt{{{(16)}^{2}}-{{(12)}^{2}}}}{16} \\
& \text{ }=\dfrac{\sqrt{112}}{16}<1 \\
\end{align}$
Since the eccentricity $e<1$, the given equation represents an ellipse.
Thus, Option (B) is correct.
Note: Here we need to remember the eccentricity is to be calculated in order to find the type of the curve.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
The eccentricity is calculated by the intercepts of the axes,
$e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a}$
If the eccentricity $e=1$, then the curve is a parabola
If the eccentricity $e<1$, then the curve is an ellipse
If the eccentricity $e>1$, then the curve is a hyperbola
Complete step by step solution: The given equation is $\left| z-2 \right|+\left| z+2 \right|=8$
We know that, $z=x+iy$
On substituting,
\[\begin{align}
& \left| z-2 \right|+\left| z+2 \right|=8 \\
& \left| x+iy-2 \right|+\left| x+iy+2 \right|=8 \\
& \left| (x-2)+iy \right|+\left| (x+2)+iy \right|=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+2)}^{2}}+{{y}^{2}}}=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}=8-\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
Squaring on both sides, we get
\[\begin{align}
& {{(x-2)}^{2}}+{{y}^{2}}=64+{{(x+2)}^{2}}+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{x}^{2}}-4x+4+{{y}^{2}}=64+{{x}^{2}}+4x+4+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -4x-4x=64-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -8x-64=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
\[\begin{align}
& -8(x+8)=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& (x+8)=2\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{(x+8)}^{2}}=4{{(x+2)}^{2}}+4{{y}^{2}} \\
& {{x}^{2}}+16x+64=4({{x}^{2}}+4x+4)+4{{y}^{2}} \\
\end{align}\]
\[\begin{align}
& {{x}^{2}}+16x+64=4{{x}^{2}}+16x+16+4{{y}^{2}} \\
& 3{{x}^{2}}+4{{y}^{2}}=48 \\
& \dfrac{3{{x}^{2}}}{48}+\dfrac{4{{y}^{2}}}{48}=1 \\
& \dfrac{{{x}^{2}}}{16}+\dfrac{{{y}^{2}}}{12}=1 \\
\end{align}\]
Here the intercepts are $a=16,b=12$.
Since $a>b$, the eccentricity is
$\begin{align}
& e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a} \\
& \text{ }=\dfrac{\sqrt{{{(16)}^{2}}-{{(12)}^{2}}}}{16} \\
& \text{ }=\dfrac{\sqrt{112}}{16}<1 \\
\end{align}$
Since the eccentricity $e<1$, the given equation represents an ellipse.
Thus, Option (B) is correct.
Note: Here we need to remember the eccentricity is to be calculated in order to find the type of the curve.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

NCERT Solutions for Class 11 Maths Chapter Chapter 4 Complex Numbers And Quadratic Equations

NCERT Solutions For Class 11 Maths Chapter 14 Probability - 2025-26

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

