
If $z$ is a complex number in the argand plane, then the equation $\left| z-2 \right|+\left| z+2 \right|=8$ represents
A. Parabola
B. Ellipse
C. Hyperbola
D. Circle
Answer
232.8k+ views
Hint: In this question, we are to find the type of the given equation. The given options are the curves, by using the eccentricity of the curve. Depending on the eccentricity, the given equation is named.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
The eccentricity is calculated by the intercepts of the axes,
$e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a}$
If the eccentricity $e=1$, then the curve is a parabola
If the eccentricity $e<1$, then the curve is an ellipse
If the eccentricity $e>1$, then the curve is a hyperbola
Complete step by step solution: The given equation is $\left| z-2 \right|+\left| z+2 \right|=8$
We know that, $z=x+iy$
On substituting,
\[\begin{align}
& \left| z-2 \right|+\left| z+2 \right|=8 \\
& \left| x+iy-2 \right|+\left| x+iy+2 \right|=8 \\
& \left| (x-2)+iy \right|+\left| (x+2)+iy \right|=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+2)}^{2}}+{{y}^{2}}}=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}=8-\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
Squaring on both sides, we get
\[\begin{align}
& {{(x-2)}^{2}}+{{y}^{2}}=64+{{(x+2)}^{2}}+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{x}^{2}}-4x+4+{{y}^{2}}=64+{{x}^{2}}+4x+4+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -4x-4x=64-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -8x-64=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
\[\begin{align}
& -8(x+8)=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& (x+8)=2\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{(x+8)}^{2}}=4{{(x+2)}^{2}}+4{{y}^{2}} \\
& {{x}^{2}}+16x+64=4({{x}^{2}}+4x+4)+4{{y}^{2}} \\
\end{align}\]
\[\begin{align}
& {{x}^{2}}+16x+64=4{{x}^{2}}+16x+16+4{{y}^{2}} \\
& 3{{x}^{2}}+4{{y}^{2}}=48 \\
& \dfrac{3{{x}^{2}}}{48}+\dfrac{4{{y}^{2}}}{48}=1 \\
& \dfrac{{{x}^{2}}}{16}+\dfrac{{{y}^{2}}}{12}=1 \\
\end{align}\]
Here the intercepts are $a=16,b=12$.
Since $a>b$, the eccentricity is
$\begin{align}
& e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a} \\
& \text{ }=\dfrac{\sqrt{{{(16)}^{2}}-{{(12)}^{2}}}}{16} \\
& \text{ }=\dfrac{\sqrt{112}}{16}<1 \\
\end{align}$
Since the eccentricity $e<1$, the given equation represents an ellipse.
Thus, Option (B) is correct.
Note: Here we need to remember the eccentricity is to be calculated in order to find the type of the curve.
Formula used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
The eccentricity is calculated by the intercepts of the axes,
$e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a}$
If the eccentricity $e=1$, then the curve is a parabola
If the eccentricity $e<1$, then the curve is an ellipse
If the eccentricity $e>1$, then the curve is a hyperbola
Complete step by step solution: The given equation is $\left| z-2 \right|+\left| z+2 \right|=8$
We know that, $z=x+iy$
On substituting,
\[\begin{align}
& \left| z-2 \right|+\left| z+2 \right|=8 \\
& \left| x+iy-2 \right|+\left| x+iy+2 \right|=8 \\
& \left| (x-2)+iy \right|+\left| (x+2)+iy \right|=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+2)}^{2}}+{{y}^{2}}}=8 \\
& \sqrt{{{(x-2)}^{2}}+{{y}^{2}}}=8-\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
Squaring on both sides, we get
\[\begin{align}
& {{(x-2)}^{2}}+{{y}^{2}}=64+{{(x+2)}^{2}}+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{x}^{2}}-4x+4+{{y}^{2}}=64+{{x}^{2}}+4x+4+{{y}^{2}}-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -4x-4x=64-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& -8x-64=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
\end{align}\]
\[\begin{align}
& -8(x+8)=-16\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& (x+8)=2\sqrt{{{(x+2)}^{2}}+{{y}^{2}}} \\
& {{(x+8)}^{2}}=4{{(x+2)}^{2}}+4{{y}^{2}} \\
& {{x}^{2}}+16x+64=4({{x}^{2}}+4x+4)+4{{y}^{2}} \\
\end{align}\]
\[\begin{align}
& {{x}^{2}}+16x+64=4{{x}^{2}}+16x+16+4{{y}^{2}} \\
& 3{{x}^{2}}+4{{y}^{2}}=48 \\
& \dfrac{3{{x}^{2}}}{48}+\dfrac{4{{y}^{2}}}{48}=1 \\
& \dfrac{{{x}^{2}}}{16}+\dfrac{{{y}^{2}}}{12}=1 \\
\end{align}\]
Here the intercepts are $a=16,b=12$.
Since $a>b$, the eccentricity is
$\begin{align}
& e=\dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{a} \\
& \text{ }=\dfrac{\sqrt{{{(16)}^{2}}-{{(12)}^{2}}}}{16} \\
& \text{ }=\dfrac{\sqrt{112}}{16}<1 \\
\end{align}$
Since the eccentricity $e<1$, the given equation represents an ellipse.
Thus, Option (B) is correct.
Note: Here we need to remember the eccentricity is to be calculated in order to find the type of the curve.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

