
If \[y = {(x{\cot ^3}x)^{\dfrac{3}{2}}}\], then find the value of \[\dfrac{{dy}}{{dx}}\] .
A.\[\left( {\dfrac{3}{2}} \right){\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {{{\cot }^3}x - 3x{{\cot }^2}x\cos e{c^2}x} \right]\]
B. \[\left( {\dfrac{3}{2}} \right){\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {{{\cot }^2}x - 3x{{\cot }^2}x\cos e{c^2}x} \right]\]
C. \[\left( {\dfrac{3}{2}} \right){\left( {x{{\cot }^3}x} \right)^{\dfrac{3}{2}}}\left[ {{{\cot }^3}x - 3x\cos e{c^2}x} \right]\]
D. None of these
Answer
162.6k+ views
Hint: Differentiate the given function \[y = {(x{\cot ^3}x)^{\dfrac{3}{2}}}\] with respect to x with the help of chain rule and product rule to obtain the required value.
Formula used:
1. \[\dfrac{d}{{dx}}(x) = 1\]
2. \[\dfrac{{d(\cot x)}}{{dx}} = \cos e{c^2}x\]
3. \[\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}\]
4. The product rule of derivative is,
\[\dfrac{d}{{dx}}(uv) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] .
5. The chain rule of derivative is,
\[\dfrac{d}{{dx}}(f(g(x))=f^{‘}(g(x)).g^{‘}(x)\]
Complete step by step solution:
Suppose that \[x{\cot ^3}x\] is x and differentiate the term \[{(x{\cot ^3}x)^{\dfrac{3}{2}}}\] as \[{(x)^{\dfrac{3}{2}}}\], then differentiate \[x{\cot ^3}x\] with respect to x with the help of product rule. This is known as chain rule.
\[\begin{array}{l}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{(x{\cot ^3}x)^{\dfrac{3}{2}}}\\\end{array}\]
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\dfrac{d}{{dx}}(x{\cot ^3}x)\]
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x\dfrac{d}{{dx}}\left( {{{\cot }^3}x} \right) + {{\cot }^3}x\dfrac{d}{{dx}}(x)} \right]\]
Again, suppose that \[{\cot ^3}x\] is x and differentiate the term \[({\cot ^3}x)\]as \[{x^3}\], after that differentiate \[\cot x\] with respect to x.
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x.3{{\cot }^2}x\dfrac{d}{{dx}}(\cot x) + {{\cot }^3}x} \right]\]
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x.3{{\cot }^2}x( - \cos e{c^2}x) + {{\cot }^3}x} \right]\]
=\[\left( {\dfrac{3}{2}} \right){\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {{{\cot }^3}x - 3x{{\cot }^2}x\cos e{c^2}x} \right]\]
The correct option is A.
Notes: Sometime students get confused with the use of chain rule and forget to differentiate \[\cot x\] after the step \[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x\dfrac{d}{{dx}}\left( {{{\cot }^3}x} \right) + {{\cot }^3}x\dfrac{d}{{dx}}(x)} \right]\].
Formula used:
1. \[\dfrac{d}{{dx}}(x) = 1\]
2. \[\dfrac{{d(\cot x)}}{{dx}} = \cos e{c^2}x\]
3. \[\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}\]
4. The product rule of derivative is,
\[\dfrac{d}{{dx}}(uv) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\] .
5. The chain rule of derivative is,
\[\dfrac{d}{{dx}}(f(g(x))=f^{‘}(g(x)).g^{‘}(x)\]
Complete step by step solution:
Suppose that \[x{\cot ^3}x\] is x and differentiate the term \[{(x{\cot ^3}x)^{\dfrac{3}{2}}}\] as \[{(x)^{\dfrac{3}{2}}}\], then differentiate \[x{\cot ^3}x\] with respect to x with the help of product rule. This is known as chain rule.
\[\begin{array}{l}\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{(x{\cot ^3}x)^{\dfrac{3}{2}}}\\\end{array}\]
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\dfrac{d}{{dx}}(x{\cot ^3}x)\]
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x\dfrac{d}{{dx}}\left( {{{\cot }^3}x} \right) + {{\cot }^3}x\dfrac{d}{{dx}}(x)} \right]\]
Again, suppose that \[{\cot ^3}x\] is x and differentiate the term \[({\cot ^3}x)\]as \[{x^3}\], after that differentiate \[\cot x\] with respect to x.
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x.3{{\cot }^2}x\dfrac{d}{{dx}}(\cot x) + {{\cot }^3}x} \right]\]
=\[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x.3{{\cot }^2}x( - \cos e{c^2}x) + {{\cot }^3}x} \right]\]
=\[\left( {\dfrac{3}{2}} \right){\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {{{\cot }^3}x - 3x{{\cot }^2}x\cos e{c^2}x} \right]\]
The correct option is A.
Notes: Sometime students get confused with the use of chain rule and forget to differentiate \[\cot x\] after the step \[\dfrac{3}{2}{\left( {x{{\cot }^3}x} \right)^{\dfrac{1}{2}}}\left[ {x\dfrac{d}{{dx}}\left( {{{\cot }^3}x} \right) + {{\cot }^3}x\dfrac{d}{{dx}}(x)} \right]\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
