
If $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$. Then what is the value of $\dfrac{{dy}}{{dx}}$?
A. 0
B. $\dfrac{\pi }{4}$
C. 1
D. $\dfrac{1}{2}$
Answer
220.5k+ views
Hint: Simplify the given trigonometric equation by multiplying the numerator and denominator by $\cos x$. Convert the equation in terms of a trigonometric function tan. Then use the property of inverse trigonometric function. In the end, differentiate the equation with respect to $x$ and get the required answer.
Formula Used:
$\dfrac{{\sin A}}{{\cos A}} = \tan A$
$\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$
Complete step by step solution:
The given trigonometric equation is $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$.
Let’s simplify the above equation.
Divide the numerator and denominator on the right-hand side by $\cos x$.
$y = \tan^{ - 1}\left[ {\dfrac{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan x + 1}}{{1 - \tan x}}} \right]$ [Since $\dfrac{{sin A}}{{cos A}} = tan A$]
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan\left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan\left( {\dfrac{\pi }{4}} \right)\tan x}}} \right]$ [Since $\tan\left( {\dfrac{\pi }{4}} \right) = 1$]
Now apply the trigonometric identity $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$.
We get,
$y = \tan^{ - 1}\left[ {\tan\left( {\dfrac{\pi }{4} + x} \right)} \right]$
Apply the inverse trigonometry rule $\tan^{ - 1}\left( {\tan A} \right) = A$.
$y = \dfrac{\pi }{4} + x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} + x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {0 + 1} \right)$ [Since the derivative of constant term is zero.]
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘C’ is correct
Note: Remember the formula of $\tan\left( {A + B} \right)$ is $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$. The chain rule of differentiation can also be used to resolve the problem which makes it easier to examine the behavior of function step by step.
Formula Used:
$\dfrac{{\sin A}}{{\cos A}} = \tan A$
$\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$
Complete step by step solution:
The given trigonometric equation is $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$.
Let’s simplify the above equation.
Divide the numerator and denominator on the right-hand side by $\cos x$.
$y = \tan^{ - 1}\left[ {\dfrac{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan x + 1}}{{1 - \tan x}}} \right]$ [Since $\dfrac{{sin A}}{{cos A}} = tan A$]
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan\left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan\left( {\dfrac{\pi }{4}} \right)\tan x}}} \right]$ [Since $\tan\left( {\dfrac{\pi }{4}} \right) = 1$]
Now apply the trigonometric identity $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$.
We get,
$y = \tan^{ - 1}\left[ {\tan\left( {\dfrac{\pi }{4} + x} \right)} \right]$
Apply the inverse trigonometry rule $\tan^{ - 1}\left( {\tan A} \right) = A$.
$y = \dfrac{\pi }{4} + x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} + x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {0 + 1} \right)$ [Since the derivative of constant term is zero.]
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘C’ is correct
Note: Remember the formula of $\tan\left( {A + B} \right)$ is $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$. The chain rule of differentiation can also be used to resolve the problem which makes it easier to examine the behavior of function step by step.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Other Pages
Cbse Class 11 Maths Notes Chapter 9 Straight Lines

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.4 - 2025-26

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

NCERT Solutions for Class 11 Maths Chapter 7 Permutations and Combinations

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

