
If $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$. Then what is the value of $\dfrac{{dy}}{{dx}}$?
A. 0
B. $\dfrac{\pi }{4}$
C. 1
D. $\dfrac{1}{2}$
Answer
219.6k+ views
Hint: Simplify the given trigonometric equation by multiplying the numerator and denominator by $\cos x$. Convert the equation in terms of a trigonometric function tan. Then use the property of inverse trigonometric function. In the end, differentiate the equation with respect to $x$ and get the required answer.
Formula Used:
$\dfrac{{\sin A}}{{\cos A}} = \tan A$
$\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$
Complete step by step solution:
The given trigonometric equation is $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$.
Let’s simplify the above equation.
Divide the numerator and denominator on the right-hand side by $\cos x$.
$y = \tan^{ - 1}\left[ {\dfrac{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan x + 1}}{{1 - \tan x}}} \right]$ [Since $\dfrac{{sin A}}{{cos A}} = tan A$]
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan\left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan\left( {\dfrac{\pi }{4}} \right)\tan x}}} \right]$ [Since $\tan\left( {\dfrac{\pi }{4}} \right) = 1$]
Now apply the trigonometric identity $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$.
We get,
$y = \tan^{ - 1}\left[ {\tan\left( {\dfrac{\pi }{4} + x} \right)} \right]$
Apply the inverse trigonometry rule $\tan^{ - 1}\left( {\tan A} \right) = A$.
$y = \dfrac{\pi }{4} + x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} + x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {0 + 1} \right)$ [Since the derivative of constant term is zero.]
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘C’ is correct
Note: Remember the formula of $\tan\left( {A + B} \right)$ is $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$. The chain rule of differentiation can also be used to resolve the problem which makes it easier to examine the behavior of function step by step.
Formula Used:
$\dfrac{{\sin A}}{{\cos A}} = \tan A$
$\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$
Complete step by step solution:
The given trigonometric equation is $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$.
Let’s simplify the above equation.
Divide the numerator and denominator on the right-hand side by $\cos x$.
$y = \tan^{ - 1}\left[ {\dfrac{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan x + 1}}{{1 - \tan x}}} \right]$ [Since $\dfrac{{sin A}}{{cos A}} = tan A$]
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan\left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan\left( {\dfrac{\pi }{4}} \right)\tan x}}} \right]$ [Since $\tan\left( {\dfrac{\pi }{4}} \right) = 1$]
Now apply the trigonometric identity $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$.
We get,
$y = \tan^{ - 1}\left[ {\tan\left( {\dfrac{\pi }{4} + x} \right)} \right]$
Apply the inverse trigonometry rule $\tan^{ - 1}\left( {\tan A} \right) = A$.
$y = \dfrac{\pi }{4} + x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} + x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {0 + 1} \right)$ [Since the derivative of constant term is zero.]
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘C’ is correct
Note: Remember the formula of $\tan\left( {A + B} \right)$ is $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$. The chain rule of differentiation can also be used to resolve the problem which makes it easier to examine the behavior of function step by step.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

