
If \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\] , then find \[\dfrac{{dy}}{{dx}}\] .
A.\[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
B. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {x - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
C. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{1}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
D. None of these
Answer
163.2k+ views
Hint: Take logarithm to both sides of the given equation. Use some formulas of logarithm to simplify the obtained expression. Now, differentiate both sides of the obtained equation with respect to x to obtain the required answer.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
