
If \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\] , then find \[\dfrac{{dy}}{{dx}}\] .
A.\[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
B. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {x - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
C. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{1}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
D. None of these
Answer
232.8k+ views
Hint: Take logarithm to both sides of the given equation. Use some formulas of logarithm to simplify the obtained expression. Now, differentiate both sides of the obtained equation with respect to x to obtain the required answer.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

