
If \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\] , then find \[\dfrac{{dy}}{{dx}}\] .
A.\[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
B. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {x - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
C. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{1}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
D. None of these
Answer
163.5k+ views
Hint: Take logarithm to both sides of the given equation. Use some formulas of logarithm to simplify the obtained expression. Now, differentiate both sides of the obtained equation with respect to x to obtain the required answer.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
