
If \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\] , then find \[\dfrac{{dy}}{{dx}}\] .
A.\[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
B. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {x - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
C. \[\left[ {\dfrac{{2{{(x - \sin x)}^{\dfrac{1}{2}}}}}{{\sqrt x }}} \right]\left[ {\left( {\dfrac{3}{2}} \right)\dfrac{{\left( {1 - \cos x} \right)}}{{\left( {1 - \sin x} \right)}} - \dfrac{1}{{2x}}} \right]\]
D. None of these
Answer
218.7k+ views
Hint: Take logarithm to both sides of the given equation. Use some formulas of logarithm to simplify the obtained expression. Now, differentiate both sides of the obtained equation with respect to x to obtain the required answer.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Formula used:
\[\log MN = \log M + \log N\]
\[\dfrac{{\log M}}{{\log N}} = \log M - \log N\]
\[\log {a^x} = x\log a\]
The chain rule of derivative is,
\[\dfrac{d}{{dx}}f(g(x)) = \dfrac{{df}}{{dg(x)}}.\dfrac{{dg(x)}}{{dx}}\]
\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
Complete step by step solution:
The given equation is,
\[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Take logarithm to both sides of the given equation \[y = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\],
\[\log y = \log \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\]
Apply the stated formulas of logarithm for simplification,
\[\log y = \log 2{(x - \sin x)^{\dfrac{3}{2}}} - \log \sqrt x \]
\[ = \log 2 + \log {(x - \sin x)^{\dfrac{3}{2}}} - \log {x^{\dfrac{1}{2}}}\]
\[ = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\]
Differentiate the equation \[\log y = \log 2 + \dfrac{3}{2}\log (x - \sin x) - \dfrac{1}{2}\log x\] with respect to x.
\[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 0 + \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}\dfrac{d}{{dx}}(x - \sin x) - \dfrac{1}{2}.\dfrac{1}{x}\]
\[ = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]
Multiply y to both sides of the equation \[\dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{2}\dfrac{1}{{(x - \sin x)}}(1 - \cos x) - \dfrac{1}{{2x}}\]to obtain the required result.
\[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
Now, substitute the given value of y in the equation \[\dfrac{{dy}}{{dx}} = y\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\].
\[\dfrac{{dy}}{{dx}} = \dfrac{{2{{(x - \sin x)}^{\dfrac{3}{2}}}}}{{\sqrt x }}\left[ {\dfrac{3}{2}\dfrac{{(1 - \cos x)}}{{(x - \sin x)}} - \dfrac{1}{{2x}}} \right]\]
The correct option is B.
Note: When we are asked to find the derivation of the given equation, we need to change the given equation for convenience. Students make mistakes if they don’t use logarithm formulas to modify the given equation and it leads to a complex expression.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

