
If \[y = \dfrac{1}{4}{u^4}\], \[u = \dfrac{2}{3}{x^3} + 5\], then find \[\dfrac{{dy}}{{dx}}\].
A. \[\dfrac{{{x^2}}}{{27}}{\left( {2{x^3} + 15} \right)^3}\]
B. \[\dfrac{{2x}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
C. \[\dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 15} \right)^3}\]
D. None of these
Answer
218.7k+ views
Hint: In the given question, there are two equations. We will find the derivative of the first equation \[y = \dfrac{1}{4}{u^4}\] with respect to \[u\]. Then we will find the derivative of the second equation \[u = \dfrac{2}{3}{x^3} + 5\] with respect to \[x\]. By using these two derivatives, we will find \[\dfrac{{dy}}{{dx}}\].
Formula used
Power rule: \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{{dc}}{{dx}} = 0\] where \[c\] is a constant
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] where \[c\] is a constant
Sum rule: \[\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)\]
Complete step by step solution:
Given equation is \[y = \dfrac{1}{4}{u^4}\]
Let’s calculate the derivate of the above equation with respect to \[u\].
\[\dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {\dfrac{1}{4}{u^4}} \right)\]
Now we will apply the formula \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\]
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4}\dfrac{d}{{du}}\left( {{u^4}} \right)\]
Now we will apply the power rule of derivative
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4} \times 4{u^{4 - 1}}\]
\[ \Rightarrow \dfrac{{dy}}{{du}} = {u^3}\]
The second equation is
\[u = \dfrac{2}{3}{x^3} + 5\]
Let’s calculate the derivate of the above equation with respect to \[x\].
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3} + 5} \right)\]
Now we will apply the sum rule of derivative.
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3}} \right) + \dfrac{d}{{dx}}\left( 5 \right)\]
Now we will apply the formulas \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] and \[\dfrac{{dc}}{{dx}} = 0\]
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3}\dfrac{d}{{dx}}\left( {{x^3}} \right) + 0\] [since 5 is a constant so it’s derivative will be zero]
Apply the power rule of derivative
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3} \times 3{x^{3 - 1}}\]
\[ \Rightarrow \dfrac{{du}}{{dx}} = 2{x^2}\]
Let’s find the expression for \[\dfrac{{dy}}{{dx}}\] by applying the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
Putting the values of \[\dfrac{{dy}}{{du}}\] and \[\dfrac{{du}}{{dx}}\]
\[\dfrac{{dy}}{{dx}} = 2{x^2} \cdot {u^3}\]
Now put \[u = \dfrac{2}{3}{x^3} + 5\] in the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{2}{3}{x^3} + 5} \right)^3}\]
Simplify the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{{2{x^3} + 5}}{3}} \right)^3}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
Hence the correct option is option C.
Note: Students are often confused with the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. But the correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] is an incorrect formula. The correct formula should be \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}}\].
Formula used
Power rule: \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{{dc}}{{dx}} = 0\] where \[c\] is a constant
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] where \[c\] is a constant
Sum rule: \[\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)\]
Complete step by step solution:
Given equation is \[y = \dfrac{1}{4}{u^4}\]
Let’s calculate the derivate of the above equation with respect to \[u\].
\[\dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {\dfrac{1}{4}{u^4}} \right)\]
Now we will apply the formula \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\]
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4}\dfrac{d}{{du}}\left( {{u^4}} \right)\]
Now we will apply the power rule of derivative
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4} \times 4{u^{4 - 1}}\]
\[ \Rightarrow \dfrac{{dy}}{{du}} = {u^3}\]
The second equation is
\[u = \dfrac{2}{3}{x^3} + 5\]
Let’s calculate the derivate of the above equation with respect to \[x\].
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3} + 5} \right)\]
Now we will apply the sum rule of derivative.
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3}} \right) + \dfrac{d}{{dx}}\left( 5 \right)\]
Now we will apply the formulas \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] and \[\dfrac{{dc}}{{dx}} = 0\]
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3}\dfrac{d}{{dx}}\left( {{x^3}} \right) + 0\] [since 5 is a constant so it’s derivative will be zero]
Apply the power rule of derivative
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3} \times 3{x^{3 - 1}}\]
\[ \Rightarrow \dfrac{{du}}{{dx}} = 2{x^2}\]
Let’s find the expression for \[\dfrac{{dy}}{{dx}}\] by applying the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
Putting the values of \[\dfrac{{dy}}{{du}}\] and \[\dfrac{{du}}{{dx}}\]
\[\dfrac{{dy}}{{dx}} = 2{x^2} \cdot {u^3}\]
Now put \[u = \dfrac{2}{3}{x^3} + 5\] in the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{2}{3}{x^3} + 5} \right)^3}\]
Simplify the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{{2{x^3} + 5}}{3}} \right)^3}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
Hence the correct option is option C.
Note: Students are often confused with the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. But the correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] is an incorrect formula. The correct formula should be \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}}\].
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

