
If \[y = \dfrac{1}{4}{u^4}\], \[u = \dfrac{2}{3}{x^3} + 5\], then find \[\dfrac{{dy}}{{dx}}\].
A. \[\dfrac{{{x^2}}}{{27}}{\left( {2{x^3} + 15} \right)^3}\]
B. \[\dfrac{{2x}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
C. \[\dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 15} \right)^3}\]
D. None of these
Answer
161.1k+ views
Hint: In the given question, there are two equations. We will find the derivative of the first equation \[y = \dfrac{1}{4}{u^4}\] with respect to \[u\]. Then we will find the derivative of the second equation \[u = \dfrac{2}{3}{x^3} + 5\] with respect to \[x\]. By using these two derivatives, we will find \[\dfrac{{dy}}{{dx}}\].
Formula used
Power rule: \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{{dc}}{{dx}} = 0\] where \[c\] is a constant
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] where \[c\] is a constant
Sum rule: \[\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)\]
Complete step by step solution:
Given equation is \[y = \dfrac{1}{4}{u^4}\]
Let’s calculate the derivate of the above equation with respect to \[u\].
\[\dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {\dfrac{1}{4}{u^4}} \right)\]
Now we will apply the formula \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\]
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4}\dfrac{d}{{du}}\left( {{u^4}} \right)\]
Now we will apply the power rule of derivative
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4} \times 4{u^{4 - 1}}\]
\[ \Rightarrow \dfrac{{dy}}{{du}} = {u^3}\]
The second equation is
\[u = \dfrac{2}{3}{x^3} + 5\]
Let’s calculate the derivate of the above equation with respect to \[x\].
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3} + 5} \right)\]
Now we will apply the sum rule of derivative.
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3}} \right) + \dfrac{d}{{dx}}\left( 5 \right)\]
Now we will apply the formulas \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] and \[\dfrac{{dc}}{{dx}} = 0\]
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3}\dfrac{d}{{dx}}\left( {{x^3}} \right) + 0\] [since 5 is a constant so it’s derivative will be zero]
Apply the power rule of derivative
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3} \times 3{x^{3 - 1}}\]
\[ \Rightarrow \dfrac{{du}}{{dx}} = 2{x^2}\]
Let’s find the expression for \[\dfrac{{dy}}{{dx}}\] by applying the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
Putting the values of \[\dfrac{{dy}}{{du}}\] and \[\dfrac{{du}}{{dx}}\]
\[\dfrac{{dy}}{{dx}} = 2{x^2} \cdot {u^3}\]
Now put \[u = \dfrac{2}{3}{x^3} + 5\] in the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{2}{3}{x^3} + 5} \right)^3}\]
Simplify the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{{2{x^3} + 5}}{3}} \right)^3}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
Hence the correct option is option C.
Note: Students are often confused with the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. But the correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] is an incorrect formula. The correct formula should be \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}}\].
Formula used
Power rule: \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{{dc}}{{dx}} = 0\] where \[c\] is a constant
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] where \[c\] is a constant
Sum rule: \[\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)\]
Complete step by step solution:
Given equation is \[y = \dfrac{1}{4}{u^4}\]
Let’s calculate the derivate of the above equation with respect to \[u\].
\[\dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {\dfrac{1}{4}{u^4}} \right)\]
Now we will apply the formula \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\]
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4}\dfrac{d}{{du}}\left( {{u^4}} \right)\]
Now we will apply the power rule of derivative
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4} \times 4{u^{4 - 1}}\]
\[ \Rightarrow \dfrac{{dy}}{{du}} = {u^3}\]
The second equation is
\[u = \dfrac{2}{3}{x^3} + 5\]
Let’s calculate the derivate of the above equation with respect to \[x\].
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3} + 5} \right)\]
Now we will apply the sum rule of derivative.
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3}} \right) + \dfrac{d}{{dx}}\left( 5 \right)\]
Now we will apply the formulas \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] and \[\dfrac{{dc}}{{dx}} = 0\]
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3}\dfrac{d}{{dx}}\left( {{x^3}} \right) + 0\] [since 5 is a constant so it’s derivative will be zero]
Apply the power rule of derivative
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3} \times 3{x^{3 - 1}}\]
\[ \Rightarrow \dfrac{{du}}{{dx}} = 2{x^2}\]
Let’s find the expression for \[\dfrac{{dy}}{{dx}}\] by applying the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
Putting the values of \[\dfrac{{dy}}{{du}}\] and \[\dfrac{{du}}{{dx}}\]
\[\dfrac{{dy}}{{dx}} = 2{x^2} \cdot {u^3}\]
Now put \[u = \dfrac{2}{3}{x^3} + 5\] in the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{2}{3}{x^3} + 5} \right)^3}\]
Simplify the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{{2{x^3} + 5}}{3}} \right)^3}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
Hence the correct option is option C.
Note: Students are often confused with the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. But the correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] is an incorrect formula. The correct formula should be \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
