
If \[y = \dfrac{1}{4}{u^4}\], \[u = \dfrac{2}{3}{x^3} + 5\], then find \[\dfrac{{dy}}{{dx}}\].
A. \[\dfrac{{{x^2}}}{{27}}{\left( {2{x^3} + 15} \right)^3}\]
B. \[\dfrac{{2x}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
C. \[\dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 15} \right)^3}\]
D. None of these
Answer
232.8k+ views
Hint: In the given question, there are two equations. We will find the derivative of the first equation \[y = \dfrac{1}{4}{u^4}\] with respect to \[u\]. Then we will find the derivative of the second equation \[u = \dfrac{2}{3}{x^3} + 5\] with respect to \[x\]. By using these two derivatives, we will find \[\dfrac{{dy}}{{dx}}\].
Formula used
Power rule: \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{{dc}}{{dx}} = 0\] where \[c\] is a constant
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] where \[c\] is a constant
Sum rule: \[\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)\]
Complete step by step solution:
Given equation is \[y = \dfrac{1}{4}{u^4}\]
Let’s calculate the derivate of the above equation with respect to \[u\].
\[\dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {\dfrac{1}{4}{u^4}} \right)\]
Now we will apply the formula \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\]
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4}\dfrac{d}{{du}}\left( {{u^4}} \right)\]
Now we will apply the power rule of derivative
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4} \times 4{u^{4 - 1}}\]
\[ \Rightarrow \dfrac{{dy}}{{du}} = {u^3}\]
The second equation is
\[u = \dfrac{2}{3}{x^3} + 5\]
Let’s calculate the derivate of the above equation with respect to \[x\].
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3} + 5} \right)\]
Now we will apply the sum rule of derivative.
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3}} \right) + \dfrac{d}{{dx}}\left( 5 \right)\]
Now we will apply the formulas \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] and \[\dfrac{{dc}}{{dx}} = 0\]
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3}\dfrac{d}{{dx}}\left( {{x^3}} \right) + 0\] [since 5 is a constant so it’s derivative will be zero]
Apply the power rule of derivative
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3} \times 3{x^{3 - 1}}\]
\[ \Rightarrow \dfrac{{du}}{{dx}} = 2{x^2}\]
Let’s find the expression for \[\dfrac{{dy}}{{dx}}\] by applying the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
Putting the values of \[\dfrac{{dy}}{{du}}\] and \[\dfrac{{du}}{{dx}}\]
\[\dfrac{{dy}}{{dx}} = 2{x^2} \cdot {u^3}\]
Now put \[u = \dfrac{2}{3}{x^3} + 5\] in the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{2}{3}{x^3} + 5} \right)^3}\]
Simplify the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{{2{x^3} + 5}}{3}} \right)^3}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
Hence the correct option is option C.
Note: Students are often confused with the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. But the correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] is an incorrect formula. The correct formula should be \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}}\].
Formula used
Power rule: \[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{{dc}}{{dx}} = 0\] where \[c\] is a constant
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] where \[c\] is a constant
Sum rule: \[\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)\]
Complete step by step solution:
Given equation is \[y = \dfrac{1}{4}{u^4}\]
Let’s calculate the derivate of the above equation with respect to \[u\].
\[\dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {\dfrac{1}{4}{u^4}} \right)\]
Now we will apply the formula \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\]
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4}\dfrac{d}{{du}}\left( {{u^4}} \right)\]
Now we will apply the power rule of derivative
\[\dfrac{{dy}}{{du}} = \dfrac{1}{4} \times 4{u^{4 - 1}}\]
\[ \Rightarrow \dfrac{{dy}}{{du}} = {u^3}\]
The second equation is
\[u = \dfrac{2}{3}{x^3} + 5\]
Let’s calculate the derivate of the above equation with respect to \[x\].
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3} + 5} \right)\]
Now we will apply the sum rule of derivative.
\[\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{2}{3}{x^3}} \right) + \dfrac{d}{{dx}}\left( 5 \right)\]
Now we will apply the formulas \[\dfrac{d}{{dx}}\left( {cf\left( x \right)} \right) = c\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)\] and \[\dfrac{{dc}}{{dx}} = 0\]
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3}\dfrac{d}{{dx}}\left( {{x^3}} \right) + 0\] [since 5 is a constant so it’s derivative will be zero]
Apply the power rule of derivative
\[\dfrac{{du}}{{dx}} = \dfrac{2}{3} \times 3{x^{3 - 1}}\]
\[ \Rightarrow \dfrac{{du}}{{dx}} = 2{x^2}\]
Let’s find the expression for \[\dfrac{{dy}}{{dx}}\] by applying the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]
Putting the values of \[\dfrac{{dy}}{{du}}\] and \[\dfrac{{du}}{{dx}}\]
\[\dfrac{{dy}}{{dx}} = 2{x^2} \cdot {u^3}\]
Now put \[u = \dfrac{2}{3}{x^3} + 5\] in the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{2}{3}{x^3} + 5} \right)^3}\]
Simplify the above equation
\[\dfrac{{dy}}{{dx}} = 2{x^2}{\left( {\dfrac{{2{x^3} + 5}}{3}} \right)^3}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2{x^2}}}{{27}}{\left( {2{x^3} + 5} \right)^3}\]
Hence the correct option is option C.
Note: Students are often confused with the formula \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. But the correct formula is \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}\]. \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{du}}{{dx}}}}\] is an incorrect formula. The correct formula should be \[\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{du}}}}{{\dfrac{{dx}}{{du}}}}\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

