
If \[x=\varphi \left( t \right)\], \[y=\psi \left( t \right)\], then \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] is equal to
(1) \[\dfrac{\left( \varphi' \psi'' -\text{ }\psi' \varphi'' \right)}{{{\left( \varphi' \right)}^{2}}}\]
(2) \[\dfrac{\left( \varphi' \psi'' -\text{ }\psi' \varphi'' \right)}{{{\left( \varphi' \right)}^{3}}}\]
(3) \[\dfrac{\varphi'' }{\psi'' }\]
(4) \[\dfrac{\psi'' }{\varphi'' }\]
Answer
163.5k+ views
Hint: Here, in this given question we need to find the value of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\], first we will differentiate \[x\] and \[~y\] with respect to \[t\]and after that we will divide \[\dfrac{dy}{dx}\] and then again differentiate it with respect to \[x\]at last simplify it to get the requires answer.
Formula Used:
A formula for obtaining the derivative of a quotient of two functions is the quotient rule. It makes remembering all the terms a little bit simpler.
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{vd\left( u \right)-ud\left( v \right)}{{{v}^{2}}}$
According to the formula, you must: in order to determine the derivative of \[u\] divided by \[v\]:
Multiply the derivative of \[u\] by \[v\].
The product of \[u\] times the derivative of \[v\] must then be subtracted from that result.
The final step is to multiply those terms by \[v\] squared.
Complete step by step Solution:
Given \[x=\varphi \left( t \right)\] and \[y=\psi \left( t \right).\]
Differentiate \[x\] and \[~y\] with respect to \[t\]
\[\dfrac{dx}{dt}=\varphi' \left( t \right)\] $...\left( i \right)$
\[\dfrac{dy}{dt}=\psi' \left( t \right)\] $...\left( ii \right)$
Divide equation $\left( ii \right)$by equation $\left( i \right)$
\[\dfrac{dy}{dx}=\dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)}\]
Double differentiate \[\dfrac{dy}{dx}\] with respect to \[x\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}~\]
\[=\left( \dfrac{d}{dx} \right)\left( \dfrac{dy}{dx} \right)\]
Multiply and divide R.H.S by $dt$
\[=\left( \dfrac{d}{dx} \right)\left( \dfrac{dy}{dx} \right)\left( \dfrac{dt}{dt} \right)\]
Now rewrite the equation as
\[=\left( \dfrac{d}{dt} \right)\left( \dfrac{dy}{dx} \right)\left( \dfrac{dt}{dx} \right)\]
Here, we can write \[\dfrac{dy}{dx}\] as \[\dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)}\]
\[=\text{ }\left( \dfrac{d}{dt} \right)\text{ }\left\{ \dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)} \right\}\times \left( \dfrac{dt}{dx} \right)\]
Again, we can write \[\dfrac{dt}{dx}\]as \[\dfrac{1}{\varphi' \left( t \right)}\]
\[=\text{ }\left( \dfrac{d}{dt} \right)\text{ }\left\{ \dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)} \right\}\times \text{ }\dfrac{1}{\varphi' \left( t \right)}\]
Here we will use the quotient rule formula of differentiation
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{vd\left( u \right)-ud\left( v \right)}{{{v}^{2}}}$
Here, \[\dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)}\] are in $\dfrac{u}{v}$ form
\[=\text{ }\dfrac{\left[ \varphi' \left( t \right)\left( \dfrac{d}{dt} \right)\text{ }\psi' \left( t \right)\text{ }\text{ }\psi' \left( t \right)\left( \dfrac{d}{dt} \right)\varphi' \left( t \right) \right]}{{{\left( \varphi' \left( t \right) \right)}^{2}}}\times \dfrac{1}{\varphi' \left( t \right)}\]
\[=\text{ }\dfrac{\left[ \varphi' \left( t \right)\left( \dfrac{d}{dt} \right)\text{ }\psi' \left( t \right)\text{ }\text{ }\psi' \left( t \right)\left( \dfrac{d}{dt} \right)\varphi' \left( t \right) \right]}{{{\left( \varphi' \left( t \right) \right)}^{2}}\varphi' \left( t \right)}\]
\[=\text{ }\dfrac{\left[ \varphi' \left( t \right)\text{ }\psi'' \left( t \right)\text{ }\text{ }\psi' \left( t \right)\varphi'' \left( t \right) \right]}{{{\left( \varphi' \left( t \right) \right)}^{3}}}\]
Hence, the correct option is 2.
Note:To solve this type of questions, one must remember the rules of differentiation
Here to solve this question we have used differentiation, double differentiation
(For example, $\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}~$ ) and a formula of quotient rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{vd\left( u \right)-ud\left( v \right)}{{{v}^{2}}}$
We can use this formula when we have to differentiate a numerator and denominator with respect to \[x\]
We can understand this from an example
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{{{x}^{2}}+x}{x}$
$=\dfrac{xd\left( {{x}^{2}}+x \right)-\left( {{x}^{2}}+x \right)d\left( x \right)}{{{x}^{2}}}$
$=\dfrac{x\left( 2x+1 \right)-\left( {{x}^{2}}+x \right)\cdot 1}{{{x}^{2}}}$
$=\dfrac{2{{x}^{2}}+x-{{x}^{2}}-x}{{{x}^{2}}}$
$=\dfrac{{{x}^{2}}}{{{x}^{2}}}$
$=1$
Hence, $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{{{x}^{2}}+x}{x}=1$
Formula Used:
A formula for obtaining the derivative of a quotient of two functions is the quotient rule. It makes remembering all the terms a little bit simpler.
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{vd\left( u \right)-ud\left( v \right)}{{{v}^{2}}}$
According to the formula, you must: in order to determine the derivative of \[u\] divided by \[v\]:
Multiply the derivative of \[u\] by \[v\].
The product of \[u\] times the derivative of \[v\] must then be subtracted from that result.
The final step is to multiply those terms by \[v\] squared.
Complete step by step Solution:
Given \[x=\varphi \left( t \right)\] and \[y=\psi \left( t \right).\]
Differentiate \[x\] and \[~y\] with respect to \[t\]
\[\dfrac{dx}{dt}=\varphi' \left( t \right)\] $...\left( i \right)$
\[\dfrac{dy}{dt}=\psi' \left( t \right)\] $...\left( ii \right)$
Divide equation $\left( ii \right)$by equation $\left( i \right)$
\[\dfrac{dy}{dx}=\dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)}\]
Double differentiate \[\dfrac{dy}{dx}\] with respect to \[x\]
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}~\]
\[=\left( \dfrac{d}{dx} \right)\left( \dfrac{dy}{dx} \right)\]
Multiply and divide R.H.S by $dt$
\[=\left( \dfrac{d}{dx} \right)\left( \dfrac{dy}{dx} \right)\left( \dfrac{dt}{dt} \right)\]
Now rewrite the equation as
\[=\left( \dfrac{d}{dt} \right)\left( \dfrac{dy}{dx} \right)\left( \dfrac{dt}{dx} \right)\]
Here, we can write \[\dfrac{dy}{dx}\] as \[\dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)}\]
\[=\text{ }\left( \dfrac{d}{dt} \right)\text{ }\left\{ \dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)} \right\}\times \left( \dfrac{dt}{dx} \right)\]
Again, we can write \[\dfrac{dt}{dx}\]as \[\dfrac{1}{\varphi' \left( t \right)}\]
\[=\text{ }\left( \dfrac{d}{dt} \right)\text{ }\left\{ \dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)} \right\}\times \text{ }\dfrac{1}{\varphi' \left( t \right)}\]
Here we will use the quotient rule formula of differentiation
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{vd\left( u \right)-ud\left( v \right)}{{{v}^{2}}}$
Here, \[\dfrac{\psi' \left( t \right)}{\varphi' \left( t \right)}\] are in $\dfrac{u}{v}$ form
\[=\text{ }\dfrac{\left[ \varphi' \left( t \right)\left( \dfrac{d}{dt} \right)\text{ }\psi' \left( t \right)\text{ }\text{ }\psi' \left( t \right)\left( \dfrac{d}{dt} \right)\varphi' \left( t \right) \right]}{{{\left( \varphi' \left( t \right) \right)}^{2}}}\times \dfrac{1}{\varphi' \left( t \right)}\]
\[=\text{ }\dfrac{\left[ \varphi' \left( t \right)\left( \dfrac{d}{dt} \right)\text{ }\psi' \left( t \right)\text{ }\text{ }\psi' \left( t \right)\left( \dfrac{d}{dt} \right)\varphi' \left( t \right) \right]}{{{\left( \varphi' \left( t \right) \right)}^{2}}\varphi' \left( t \right)}\]
\[=\text{ }\dfrac{\left[ \varphi' \left( t \right)\text{ }\psi'' \left( t \right)\text{ }\text{ }\psi' \left( t \right)\varphi'' \left( t \right) \right]}{{{\left( \varphi' \left( t \right) \right)}^{3}}}\]
Hence, the correct option is 2.
Note:To solve this type of questions, one must remember the rules of differentiation
Here to solve this question we have used differentiation, double differentiation
(For example, $\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}~$ ) and a formula of quotient rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{vd\left( u \right)-ud\left( v \right)}{{{v}^{2}}}$
We can use this formula when we have to differentiate a numerator and denominator with respect to \[x\]
We can understand this from an example
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{{{x}^{2}}+x}{x}$
$=\dfrac{xd\left( {{x}^{2}}+x \right)-\left( {{x}^{2}}+x \right)d\left( x \right)}{{{x}^{2}}}$
$=\dfrac{x\left( 2x+1 \right)-\left( {{x}^{2}}+x \right)\cdot 1}{{{x}^{2}}}$
$=\dfrac{2{{x}^{2}}+x-{{x}^{2}}-x}{{{x}^{2}}}$
$=\dfrac{{{x}^{2}}}{{{x}^{2}}}$
$=1$
Hence, $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{{{x}^{2}}+x}{x}=1$
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
