
If \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\], then find \[\dfrac{{dy}}{{dx}}\].
A. \[\dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
B. \[ - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
C. \[\dfrac{1}{{\left( {1 + {x^2}} \right)}}\]
D. \[\dfrac{1}{{\left( {1 - {x^2}} \right)}}\]
Answer
163.2k+ views
Hint:First we will rewrite the equation as \[x\sqrt {1 + y} = - y\sqrt {1 + x} \]. Then taking square both sides of the equation to remove the square root. Then simplify the equation and find \[y\] in terms of \[x\]. Then we will apply the quotient formula \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\] to get \[\dfrac{{dy}}{{dx}}\].
Formula Used:
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[{\left( {\sqrt x } \right)^2} = x\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Quotient formula: \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Rewrite the above equation:
\[x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Taking square root both sides of the equation
\[ \Rightarrow {\left( {x\sqrt {1 + y} } \right)^2} = {\left( { - y\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {x^2}{\left( {\sqrt {1 + y} } \right)^2} = {y^2}{\left( {\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {\sqrt x } \right)^2} = x\]
\[ \Rightarrow {x^2}\left( {1 + y} \right) = {y^2}\left( {1 + x} \right)\]
Apply distributive property
\[ \Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x\]
\[ \Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] on the left side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = {y^2}x - {x^2}y\]
Take common \[xy\] from the right side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = xy\left( {y - x} \right)\]
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = - xy\left( {x - y} \right)\]
Cancel out \[\left( {x - y} \right)\]
\[ \Rightarrow \left( {x + y} \right) = - xy\]
\[ \Rightarrow x = - xy - y\]
\[ \Rightarrow x = - y\left( {1 + x} \right)\]
\[ \Rightarrow y = - \dfrac{x}{{1 + x}}\]
Differentiate with respect to \[x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)\dfrac{d}{{dx}}x - x\dfrac{d}{{dx}}\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right) \cdot 1 - x \cdot 1}}{{{{\left( {1 + x} \right)}^2}}}\]
Apply the formula \[\dfrac{{dx}}{{dx}} = 1\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Hence option B is the correct option.
Note:Sometimes students apply the derivative formula in the give equation \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]. That is a length process and they are unable to reach the desired result. So first we have to simplify the given equation then find the derivative of it.
Formula Used:
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[{\left( {\sqrt x } \right)^2} = x\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Quotient formula: \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Rewrite the above equation:
\[x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Taking square root both sides of the equation
\[ \Rightarrow {\left( {x\sqrt {1 + y} } \right)^2} = {\left( { - y\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {x^2}{\left( {\sqrt {1 + y} } \right)^2} = {y^2}{\left( {\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {\sqrt x } \right)^2} = x\]
\[ \Rightarrow {x^2}\left( {1 + y} \right) = {y^2}\left( {1 + x} \right)\]
Apply distributive property
\[ \Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x\]
\[ \Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] on the left side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = {y^2}x - {x^2}y\]
Take common \[xy\] from the right side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = xy\left( {y - x} \right)\]
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = - xy\left( {x - y} \right)\]
Cancel out \[\left( {x - y} \right)\]
\[ \Rightarrow \left( {x + y} \right) = - xy\]
\[ \Rightarrow x = - xy - y\]
\[ \Rightarrow x = - y\left( {1 + x} \right)\]
\[ \Rightarrow y = - \dfrac{x}{{1 + x}}\]
Differentiate with respect to \[x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)\dfrac{d}{{dx}}x - x\dfrac{d}{{dx}}\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right) \cdot 1 - x \cdot 1}}{{{{\left( {1 + x} \right)}^2}}}\]
Apply the formula \[\dfrac{{dx}}{{dx}} = 1\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Hence option B is the correct option.
Note:Sometimes students apply the derivative formula in the give equation \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]. That is a length process and they are unable to reach the desired result. So first we have to simplify the given equation then find the derivative of it.
Recently Updated Pages
JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIT Full Form

Difference Between Metals and Non-Metals for JEE Main 2024

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Reaction of Metals With Acids for JEE

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
