
If \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\], then find \[\dfrac{{dy}}{{dx}}\].
A. \[\dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
B. \[ - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
C. \[\dfrac{1}{{\left( {1 + {x^2}} \right)}}\]
D. \[\dfrac{1}{{\left( {1 - {x^2}} \right)}}\]
Answer
232.8k+ views
Hint:First we will rewrite the equation as \[x\sqrt {1 + y} = - y\sqrt {1 + x} \]. Then taking square both sides of the equation to remove the square root. Then simplify the equation and find \[y\] in terms of \[x\]. Then we will apply the quotient formula \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\] to get \[\dfrac{{dy}}{{dx}}\].
Formula Used:
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[{\left( {\sqrt x } \right)^2} = x\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Quotient formula: \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Rewrite the above equation:
\[x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Taking square root both sides of the equation
\[ \Rightarrow {\left( {x\sqrt {1 + y} } \right)^2} = {\left( { - y\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {x^2}{\left( {\sqrt {1 + y} } \right)^2} = {y^2}{\left( {\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {\sqrt x } \right)^2} = x\]
\[ \Rightarrow {x^2}\left( {1 + y} \right) = {y^2}\left( {1 + x} \right)\]
Apply distributive property
\[ \Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x\]
\[ \Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] on the left side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = {y^2}x - {x^2}y\]
Take common \[xy\] from the right side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = xy\left( {y - x} \right)\]
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = - xy\left( {x - y} \right)\]
Cancel out \[\left( {x - y} \right)\]
\[ \Rightarrow \left( {x + y} \right) = - xy\]
\[ \Rightarrow x = - xy - y\]
\[ \Rightarrow x = - y\left( {1 + x} \right)\]
\[ \Rightarrow y = - \dfrac{x}{{1 + x}}\]
Differentiate with respect to \[x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)\dfrac{d}{{dx}}x - x\dfrac{d}{{dx}}\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right) \cdot 1 - x \cdot 1}}{{{{\left( {1 + x} \right)}^2}}}\]
Apply the formula \[\dfrac{{dx}}{{dx}} = 1\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Hence option B is the correct option.
Note:Sometimes students apply the derivative formula in the give equation \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]. That is a length process and they are unable to reach the desired result. So first we have to simplify the given equation then find the derivative of it.
Formula Used:
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[{\left( {\sqrt x } \right)^2} = x\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Quotient formula: \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Rewrite the above equation:
\[x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Taking square root both sides of the equation
\[ \Rightarrow {\left( {x\sqrt {1 + y} } \right)^2} = {\left( { - y\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {x^2}{\left( {\sqrt {1 + y} } \right)^2} = {y^2}{\left( {\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {\sqrt x } \right)^2} = x\]
\[ \Rightarrow {x^2}\left( {1 + y} \right) = {y^2}\left( {1 + x} \right)\]
Apply distributive property
\[ \Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x\]
\[ \Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] on the left side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = {y^2}x - {x^2}y\]
Take common \[xy\] from the right side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = xy\left( {y - x} \right)\]
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = - xy\left( {x - y} \right)\]
Cancel out \[\left( {x - y} \right)\]
\[ \Rightarrow \left( {x + y} \right) = - xy\]
\[ \Rightarrow x = - xy - y\]
\[ \Rightarrow x = - y\left( {1 + x} \right)\]
\[ \Rightarrow y = - \dfrac{x}{{1 + x}}\]
Differentiate with respect to \[x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)\dfrac{d}{{dx}}x - x\dfrac{d}{{dx}}\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right) \cdot 1 - x \cdot 1}}{{{{\left( {1 + x} \right)}^2}}}\]
Apply the formula \[\dfrac{{dx}}{{dx}} = 1\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Hence option B is the correct option.
Note:Sometimes students apply the derivative formula in the give equation \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]. That is a length process and they are unable to reach the desired result. So first we have to simplify the given equation then find the derivative of it.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

