If X stands for the magnetic susceptibility of a substance, \[\mu \] stands for magnetic permeability and \[{\mu _0}\] stands for the permeability of free space, then:
(A) For paramagnetic substances \[X > 0,\mu = 0\]
(B) For paramagnetic substance \[\mu > {\mu _0},X > 0\]
(C) For diamagnetic substance \[X < 0,\mu < 0\]
(D) For ferromagnetic substance \[X < 0,\mu < {\mu _0}\]
Answer
Verified
115.8k+ views
Hint
In this question, we need to check for the values of X, \[\mu \] , and \[{\mu _0}\] for all three types of substances which are paramagnetic, diamagnetic, and ferromagnetic. We will then have to compare these values with each other to find the correct option for our question.
Complete step by step solution
As we know that the relation between X and \[\mu \] of a substance is given by
\[X = \dfrac{\mu }{{{\mu _0}}} - 1\]
In a paramagnetic substance, there are some unpaired electrons that are polarized in the presence of an external magnetic field. This means that X for paramagnetic > 0. For a diamagnetic substance, the number of paired electrons is in majority. Also, these substances are polarized in the direction opposite to the external magnetic field. This means that \[X < 0\] . Ferromagnetic substances polarize strongly in the presence of an external magnetic field and thus they have high susceptibility. Using the above formula, we find that \[\mu > {\mu _0}\] for a paramagnetic substance because \[\dfrac{\mu }{{{\mu _0}}} - 1\] should always be greater than 0.
Therefore, the correct answer is option B.
Note:
The presence of a paired electron is what makes the diamagnetic substances resistant to the magnetic field. They are such that the magnetic field does not even pass through them like ferromagnetic and paramagnetic. It just sweeps away like water waves around a rock.
In this question, we need to check for the values of X, \[\mu \] , and \[{\mu _0}\] for all three types of substances which are paramagnetic, diamagnetic, and ferromagnetic. We will then have to compare these values with each other to find the correct option for our question.
Complete step by step solution
As we know that the relation between X and \[\mu \] of a substance is given by
\[X = \dfrac{\mu }{{{\mu _0}}} - 1\]
In a paramagnetic substance, there are some unpaired electrons that are polarized in the presence of an external magnetic field. This means that X for paramagnetic > 0. For a diamagnetic substance, the number of paired electrons is in majority. Also, these substances are polarized in the direction opposite to the external magnetic field. This means that \[X < 0\] . Ferromagnetic substances polarize strongly in the presence of an external magnetic field and thus they have high susceptibility. Using the above formula, we find that \[\mu > {\mu _0}\] for a paramagnetic substance because \[\dfrac{\mu }{{{\mu _0}}} - 1\] should always be greater than 0.
Therefore, the correct answer is option B.
Note:
The presence of a paired electron is what makes the diamagnetic substances resistant to the magnetic field. They are such that the magnetic field does not even pass through them like ferromagnetic and paramagnetic. It just sweeps away like water waves around a rock.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics