Answer
Verified
81.6k+ views
Hint: To solve this question, firstly we will find the value of composite function, $g(f(x))$ where $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$. Then, we will substitute the value of $g(f(x))$ in integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ and let the integral be equals to I. after that we will replace x by –x and add the both integral. After that, we will simplify the integral and using properties of log we will obtain the value of integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A rope of 1 cm in diameter breaks if tension in it class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main
Assertion The melting point Mn is more than that of class 11 chemistry JEE_Main