
If we have the function $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$(x > 0) then the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ is
(a) ${{\log }_{e}}3$
(b) ${{\log }_{e}}2$
(c) ${{\log }_{e}}e$
(d) ${{\log }_{e}}1$
Answer
124.8k+ views
Hint: To solve this question, firstly we will find the value of composite function, $g(f(x))$ where $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$. Then, we will substitute the value of $g(f(x))$ in integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ and let the integral be equals to I. after that we will replace x by –x and add the both integral. After that, we will simplify the integral and using properties of log we will obtain the value of integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Physics Average Value and RMS Value JEE Main 2025

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics
