
If we have the function $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$(x > 0) then the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ is
(a) ${{\log }_{e}}3$
(b) ${{\log }_{e}}2$
(c) ${{\log }_{e}}e$
(d) ${{\log }_{e}}1$
Answer
232.8k+ views
Hint: To solve this question, firstly we will find the value of composite function, $g(f(x))$ where $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$. Then, we will substitute the value of $g(f(x))$ in integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$ and let the integral be equals to I. after that we will replace x by –x and add the both integral. After that, we will simplify the integral and using properties of log we will obtain the value of integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Complete step-by-step solution:
Now let us find $g(f(x))$.
We are given that, $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)={{\log }_{e}}x$
The, we can say that $g\left( \left( \dfrac{2-x\cos x}{2+x\cos x} \right) \right)$
So, $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$
So, in question we are asked to evaluate the value of integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$.
So, putting the value of $g(f(x))={{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)$ in the integral $\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{g(f(x))dx}$, we get
$\Rightarrow \int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$
So, let integral be equals to I
So, $I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}$…………... ( i )
Let us replace, x by – x, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-(-x)\cos x}{2+(-x)\cos x} \right)dx}$
On simplifying, we get
$I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$………………... ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
$\Rightarrow 2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)dx}+\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$
As limits of both integral are same, so we can add both functions too,
So, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{\left( {{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)+{{\log }_{e}}\left( \dfrac{2+x\cos x}{2-x\cos x} \right) \right)dx}$
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}\left( \dfrac{2-x\cos x}{2+x\cos x} \right)\left( \dfrac{2+x\cos x}{2-x\cos x} \right)dx}$, as we know that ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ .
On simplifying, we get
$2I=\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{{{\log }_{e}}1dx}$
As, ${{\log }_{e}}1$ is constant value, so we can pull this out of integral.
So, we get
$2I={{\log }_{e}}1\int\limits_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}{1dx}$
We know that, $\int{1.dx=x}$
So, $2I={{\log }_{e}}1.\{x\}_{-\dfrac{\pi }{4}}^{\dfrac{\pi }{4}}$
On putting, upper limit as $\dfrac{\pi }{4}$ and lower limit as $-\dfrac{\pi }{4}$, we get
\[2I={{\log }_{e}}1.\left( \dfrac{\pi }{4}-\left( -\dfrac{\pi }{4} \right) \right)\]
On simplifying, we get
\[2I={{\log }_{e}}1.\left( \dfrac{2\pi }{4} \right)\]
\[\Rightarrow I={{\log }_{e}}1.\left( \dfrac{2\pi }{2.4} \right)\]
Now, we know that \[{{\log }_{e}}1=0\], so we get
\[I=0\]
Hence, option ( d ) is correct.
Note: To solve such questions, one must know how we calculate the composite function when we are given two functions because we cannot proceed without this step. Also, remember the property of definite integration which is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit. One must know the properties and values of logarithmic function such as ${{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy$ and \[{{\log }_{e}}1=0\]. Try not to make any calculation error, while solving the integral.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

