
If we given two unit vectors $\vec{a}\text{ and }\vec{b}$ such that, $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between $\vec{a}\text{ and }\vec{b}$
Answer
232.5k+ views
Hint: To solve this question, we will use the given fact that, all the three vectors $\vec{a}\text{ and }\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors. A vector is called unit vector if it has magnitude as 1. Also, if two vectors are $\vec{p}\text{ and }\vec{q}$ and angle between them is $\theta $ then
\[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
First we will use the fact that $\vec{a},\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors and then we will use the formula of angle between two vectors stated above to get the answer.
Complete step-by-step solution:
Before starting the solution, let us first understand what a unit vector is. A vector is called a unit vector if the magnitude of it is 1. If $\vec{a}$ is a unit vector than $\left| a \right|=1$
Magnitude of a vector is the length of a vector. A vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ has its magnitude as $\left| {\vec{p}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Here given, $\vec{a}\text{ and }\vec{b}$ are both unit vector.
\[\Rightarrow \left| {\vec{a}} \right|=1\text{ and }\left| {\vec{b}} \right|=1\]
Also given that, $\vec{a}+\vec{b}$ is also a unit vector.
\[\Rightarrow \left| \vec{a}+\vec{b} \right|=1\]
If \[\left| {\vec{a}} \right|=1\] then squaring both sides \[\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=1\]
Similarly, \[\left| {\vec{b}} \right|=1\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1\]
And \[\left| \vec{a}+\vec{b} \right|=1\Rightarrow {{\left| \vec{a}+\vec{b} \right|}^{2}}=1\]
Now, magnitude of a vector \[{{\left| {\vec{p}} \right|}^{2}}=\vec{p}\cdot \vec{p}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Then, applying this logic on ${{\left| \vec{a}+\vec{b} \right|}^{2}}$ we get
\[\begin{align}
& {{\left| \vec{a}+\vec{b} \right|}^{2}}=\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
& \Rightarrow \left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
\end{align}\]
Opening bracket of LHS of above equation:
\[\left( \vec{a}\cdot \vec{a} \right)+\left( \vec{a}\cdot \vec{b} \right)+\left( \vec{b}\cdot \vec{a} \right)+\left( \vec{b}\cdot \vec{b} \right)=1\]
Now, \[{{\left| {\vec{a}} \right|}^{2}}=1\] applying logic of equation (i)
\[\vec{a}\cdot \vec{a}=1\]
Similarly, \[{{\left| {\vec{b}} \right|}^{2}}=1\Rightarrow \vec{b}\cdot \vec{b}=1\]
Using this both values in above equation, we get:
\[\begin{align}
& \Rightarrow 1+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}+1=1 \\
& \Rightarrow 2+2\vec{a}\cdot \vec{b}=1 \\
& \Rightarrow \vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} \\
\end{align}\]
Subtracting 2 both sides of above equation:
\[\begin{align}
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=1-2 \\
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=-1 \\
\end{align}\]
Dividing 2 both sides of above equation:
\[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will use the formula of angle between two vectors which is given as:
If two vectors are $\vec{p}\text{ and }\vec{q}$ then angle between them is $\theta $ then \[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
We have from equation (i) \[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\]
Applying formula of angle between two vectors from above, supposing angle between $\vec{a}\text{ and }\vec{b}\text{ is }\theta $ we get:
\[\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =\dfrac{-1}{2}\]
Now, \[\left| {\vec{a}} \right|=\left| {\vec{b}} \right|=1\text{ as }\vec{a}\text{ and }\vec{b}\] are unit vectors.
\[\begin{align}
& \cos \theta =\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
& \Rightarrow \theta \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{-1}{2} \right) \\
\end{align}\]
We will use trigonometric identity as $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \]
From equation (ii) we have \[\cos \theta =\dfrac{-1}{2}\]
Substituting this in above:
\[\begin{align}
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\left( \dfrac{-1}{2} \right) \\
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{1}{2} \\
\end{align}\]
Now, value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\]
Applying ${{\cos }^{-1}}$ both sides we get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \cos \left( {{180}^{\circ }}-\theta \right) \right)={{\cos }^{-1}}\left( \cos {{60}^{\circ }} \right) \\
& \Rightarrow {{180}^{\circ }}-\theta ={{60}^{\circ }} \\
& \Rightarrow \theta ={{180}^{\circ }}-{{60}^{\circ }} \\
& \Rightarrow \theta ={{120}^{\circ }} \\
\end{align}\]
Therefore, angle $\theta $ between $\vec{a}\text{ and }\vec{b}\text{ is 12}{{\text{0}}^{\circ }}$
Hence, we have:

Where, \[OP=\vec{a}\text{ and OQ=}\vec{b}\]
Note: Solution can also end at a point where we got \[\cos \theta =\dfrac{-1}{2}\] by general trigonometric knowledge we have, that \[\cos {{120}^{\circ }}=\dfrac{-1}{2}\] so, we can directly get \[\theta ={{120}^{\circ }}\] but for more precise solution, we can also proceed by using trigonometric formula $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
First we will use the fact that $\vec{a},\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors and then we will use the formula of angle between two vectors stated above to get the answer.
Complete step-by-step solution:
Before starting the solution, let us first understand what a unit vector is. A vector is called a unit vector if the magnitude of it is 1. If $\vec{a}$ is a unit vector than $\left| a \right|=1$
Magnitude of a vector is the length of a vector. A vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ has its magnitude as $\left| {\vec{p}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Here given, $\vec{a}\text{ and }\vec{b}$ are both unit vector.
\[\Rightarrow \left| {\vec{a}} \right|=1\text{ and }\left| {\vec{b}} \right|=1\]
Also given that, $\vec{a}+\vec{b}$ is also a unit vector.
\[\Rightarrow \left| \vec{a}+\vec{b} \right|=1\]
If \[\left| {\vec{a}} \right|=1\] then squaring both sides \[\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=1\]
Similarly, \[\left| {\vec{b}} \right|=1\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1\]
And \[\left| \vec{a}+\vec{b} \right|=1\Rightarrow {{\left| \vec{a}+\vec{b} \right|}^{2}}=1\]
Now, magnitude of a vector \[{{\left| {\vec{p}} \right|}^{2}}=\vec{p}\cdot \vec{p}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Then, applying this logic on ${{\left| \vec{a}+\vec{b} \right|}^{2}}$ we get
\[\begin{align}
& {{\left| \vec{a}+\vec{b} \right|}^{2}}=\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
& \Rightarrow \left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
\end{align}\]
Opening bracket of LHS of above equation:
\[\left( \vec{a}\cdot \vec{a} \right)+\left( \vec{a}\cdot \vec{b} \right)+\left( \vec{b}\cdot \vec{a} \right)+\left( \vec{b}\cdot \vec{b} \right)=1\]
Now, \[{{\left| {\vec{a}} \right|}^{2}}=1\] applying logic of equation (i)
\[\vec{a}\cdot \vec{a}=1\]
Similarly, \[{{\left| {\vec{b}} \right|}^{2}}=1\Rightarrow \vec{b}\cdot \vec{b}=1\]
Using this both values in above equation, we get:
\[\begin{align}
& \Rightarrow 1+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}+1=1 \\
& \Rightarrow 2+2\vec{a}\cdot \vec{b}=1 \\
& \Rightarrow \vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} \\
\end{align}\]
Subtracting 2 both sides of above equation:
\[\begin{align}
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=1-2 \\
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=-1 \\
\end{align}\]
Dividing 2 both sides of above equation:
\[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will use the formula of angle between two vectors which is given as:
If two vectors are $\vec{p}\text{ and }\vec{q}$ then angle between them is $\theta $ then \[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
We have from equation (i) \[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\]
Applying formula of angle between two vectors from above, supposing angle between $\vec{a}\text{ and }\vec{b}\text{ is }\theta $ we get:
\[\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =\dfrac{-1}{2}\]
Now, \[\left| {\vec{a}} \right|=\left| {\vec{b}} \right|=1\text{ as }\vec{a}\text{ and }\vec{b}\] are unit vectors.
\[\begin{align}
& \cos \theta =\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
& \Rightarrow \theta \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{-1}{2} \right) \\
\end{align}\]
We will use trigonometric identity as $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \]
From equation (ii) we have \[\cos \theta =\dfrac{-1}{2}\]
Substituting this in above:
\[\begin{align}
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\left( \dfrac{-1}{2} \right) \\
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{1}{2} \\
\end{align}\]
Now, value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\]
Applying ${{\cos }^{-1}}$ both sides we get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \cos \left( {{180}^{\circ }}-\theta \right) \right)={{\cos }^{-1}}\left( \cos {{60}^{\circ }} \right) \\
& \Rightarrow {{180}^{\circ }}-\theta ={{60}^{\circ }} \\
& \Rightarrow \theta ={{180}^{\circ }}-{{60}^{\circ }} \\
& \Rightarrow \theta ={{120}^{\circ }} \\
\end{align}\]
Therefore, angle $\theta $ between $\vec{a}\text{ and }\vec{b}\text{ is 12}{{\text{0}}^{\circ }}$
Hence, we have:

Where, \[OP=\vec{a}\text{ and OQ=}\vec{b}\]
Note: Solution can also end at a point where we got \[\cos \theta =\dfrac{-1}{2}\] by general trigonometric knowledge we have, that \[\cos {{120}^{\circ }}=\dfrac{-1}{2}\] so, we can directly get \[\theta ={{120}^{\circ }}\] but for more precise solution, we can also proceed by using trigonometric formula $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

