
If we given two unit vectors $\vec{a}\text{ and }\vec{b}$ such that, $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between $\vec{a}\text{ and }\vec{b}$
Answer
152.7k+ views
Hint: To solve this question, we will use the given fact that, all the three vectors $\vec{a}\text{ and }\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors. A vector is called unit vector if it has magnitude as 1. Also, if two vectors are $\vec{p}\text{ and }\vec{q}$ and angle between them is $\theta $ then
\[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
First we will use the fact that $\vec{a},\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors and then we will use the formula of angle between two vectors stated above to get the answer.
Complete step-by-step solution:
Before starting the solution, let us first understand what a unit vector is. A vector is called a unit vector if the magnitude of it is 1. If $\vec{a}$ is a unit vector than $\left| a \right|=1$
Magnitude of a vector is the length of a vector. A vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ has its magnitude as $\left| {\vec{p}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Here given, $\vec{a}\text{ and }\vec{b}$ are both unit vector.
\[\Rightarrow \left| {\vec{a}} \right|=1\text{ and }\left| {\vec{b}} \right|=1\]
Also given that, $\vec{a}+\vec{b}$ is also a unit vector.
\[\Rightarrow \left| \vec{a}+\vec{b} \right|=1\]
If \[\left| {\vec{a}} \right|=1\] then squaring both sides \[\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=1\]
Similarly, \[\left| {\vec{b}} \right|=1\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1\]
And \[\left| \vec{a}+\vec{b} \right|=1\Rightarrow {{\left| \vec{a}+\vec{b} \right|}^{2}}=1\]
Now, magnitude of a vector \[{{\left| {\vec{p}} \right|}^{2}}=\vec{p}\cdot \vec{p}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Then, applying this logic on ${{\left| \vec{a}+\vec{b} \right|}^{2}}$ we get
\[\begin{align}
& {{\left| \vec{a}+\vec{b} \right|}^{2}}=\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
& \Rightarrow \left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
\end{align}\]
Opening bracket of LHS of above equation:
\[\left( \vec{a}\cdot \vec{a} \right)+\left( \vec{a}\cdot \vec{b} \right)+\left( \vec{b}\cdot \vec{a} \right)+\left( \vec{b}\cdot \vec{b} \right)=1\]
Now, \[{{\left| {\vec{a}} \right|}^{2}}=1\] applying logic of equation (i)
\[\vec{a}\cdot \vec{a}=1\]
Similarly, \[{{\left| {\vec{b}} \right|}^{2}}=1\Rightarrow \vec{b}\cdot \vec{b}=1\]
Using this both values in above equation, we get:
\[\begin{align}
& \Rightarrow 1+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}+1=1 \\
& \Rightarrow 2+2\vec{a}\cdot \vec{b}=1 \\
& \Rightarrow \vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} \\
\end{align}\]
Subtracting 2 both sides of above equation:
\[\begin{align}
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=1-2 \\
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=-1 \\
\end{align}\]
Dividing 2 both sides of above equation:
\[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will use the formula of angle between two vectors which is given as:
If two vectors are $\vec{p}\text{ and }\vec{q}$ then angle between them is $\theta $ then \[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
We have from equation (i) \[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\]
Applying formula of angle between two vectors from above, supposing angle between $\vec{a}\text{ and }\vec{b}\text{ is }\theta $ we get:
\[\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =\dfrac{-1}{2}\]
Now, \[\left| {\vec{a}} \right|=\left| {\vec{b}} \right|=1\text{ as }\vec{a}\text{ and }\vec{b}\] are unit vectors.
\[\begin{align}
& \cos \theta =\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
& \Rightarrow \theta \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{-1}{2} \right) \\
\end{align}\]
We will use trigonometric identity as $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \]
From equation (ii) we have \[\cos \theta =\dfrac{-1}{2}\]
Substituting this in above:
\[\begin{align}
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\left( \dfrac{-1}{2} \right) \\
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{1}{2} \\
\end{align}\]
Now, value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\]
Applying ${{\cos }^{-1}}$ both sides we get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \cos \left( {{180}^{\circ }}-\theta \right) \right)={{\cos }^{-1}}\left( \cos {{60}^{\circ }} \right) \\
& \Rightarrow {{180}^{\circ }}-\theta ={{60}^{\circ }} \\
& \Rightarrow \theta ={{180}^{\circ }}-{{60}^{\circ }} \\
& \Rightarrow \theta ={{120}^{\circ }} \\
\end{align}\]
Therefore, angle $\theta $ between $\vec{a}\text{ and }\vec{b}\text{ is 12}{{\text{0}}^{\circ }}$
Hence, we have:

Where, \[OP=\vec{a}\text{ and OQ=}\vec{b}\]
Note: Solution can also end at a point where we got \[\cos \theta =\dfrac{-1}{2}\] by general trigonometric knowledge we have, that \[\cos {{120}^{\circ }}=\dfrac{-1}{2}\] so, we can directly get \[\theta ={{120}^{\circ }}\] but for more precise solution, we can also proceed by using trigonometric formula $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
First we will use the fact that $\vec{a},\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors and then we will use the formula of angle between two vectors stated above to get the answer.
Complete step-by-step solution:
Before starting the solution, let us first understand what a unit vector is. A vector is called a unit vector if the magnitude of it is 1. If $\vec{a}$ is a unit vector than $\left| a \right|=1$
Magnitude of a vector is the length of a vector. A vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ has its magnitude as $\left| {\vec{p}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Here given, $\vec{a}\text{ and }\vec{b}$ are both unit vector.
\[\Rightarrow \left| {\vec{a}} \right|=1\text{ and }\left| {\vec{b}} \right|=1\]
Also given that, $\vec{a}+\vec{b}$ is also a unit vector.
\[\Rightarrow \left| \vec{a}+\vec{b} \right|=1\]
If \[\left| {\vec{a}} \right|=1\] then squaring both sides \[\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=1\]
Similarly, \[\left| {\vec{b}} \right|=1\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1\]
And \[\left| \vec{a}+\vec{b} \right|=1\Rightarrow {{\left| \vec{a}+\vec{b} \right|}^{2}}=1\]
Now, magnitude of a vector \[{{\left| {\vec{p}} \right|}^{2}}=\vec{p}\cdot \vec{p}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Then, applying this logic on ${{\left| \vec{a}+\vec{b} \right|}^{2}}$ we get
\[\begin{align}
& {{\left| \vec{a}+\vec{b} \right|}^{2}}=\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
& \Rightarrow \left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
\end{align}\]
Opening bracket of LHS of above equation:
\[\left( \vec{a}\cdot \vec{a} \right)+\left( \vec{a}\cdot \vec{b} \right)+\left( \vec{b}\cdot \vec{a} \right)+\left( \vec{b}\cdot \vec{b} \right)=1\]
Now, \[{{\left| {\vec{a}} \right|}^{2}}=1\] applying logic of equation (i)
\[\vec{a}\cdot \vec{a}=1\]
Similarly, \[{{\left| {\vec{b}} \right|}^{2}}=1\Rightarrow \vec{b}\cdot \vec{b}=1\]
Using this both values in above equation, we get:
\[\begin{align}
& \Rightarrow 1+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}+1=1 \\
& \Rightarrow 2+2\vec{a}\cdot \vec{b}=1 \\
& \Rightarrow \vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} \\
\end{align}\]
Subtracting 2 both sides of above equation:
\[\begin{align}
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=1-2 \\
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=-1 \\
\end{align}\]
Dividing 2 both sides of above equation:
\[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will use the formula of angle between two vectors which is given as:
If two vectors are $\vec{p}\text{ and }\vec{q}$ then angle between them is $\theta $ then \[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
We have from equation (i) \[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\]
Applying formula of angle between two vectors from above, supposing angle between $\vec{a}\text{ and }\vec{b}\text{ is }\theta $ we get:
\[\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =\dfrac{-1}{2}\]
Now, \[\left| {\vec{a}} \right|=\left| {\vec{b}} \right|=1\text{ as }\vec{a}\text{ and }\vec{b}\] are unit vectors.
\[\begin{align}
& \cos \theta =\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
& \Rightarrow \theta \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{-1}{2} \right) \\
\end{align}\]
We will use trigonometric identity as $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \]
From equation (ii) we have \[\cos \theta =\dfrac{-1}{2}\]
Substituting this in above:
\[\begin{align}
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\left( \dfrac{-1}{2} \right) \\
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{1}{2} \\
\end{align}\]
Now, value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\]
Applying ${{\cos }^{-1}}$ both sides we get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \cos \left( {{180}^{\circ }}-\theta \right) \right)={{\cos }^{-1}}\left( \cos {{60}^{\circ }} \right) \\
& \Rightarrow {{180}^{\circ }}-\theta ={{60}^{\circ }} \\
& \Rightarrow \theta ={{180}^{\circ }}-{{60}^{\circ }} \\
& \Rightarrow \theta ={{120}^{\circ }} \\
\end{align}\]
Therefore, angle $\theta $ between $\vec{a}\text{ and }\vec{b}\text{ is 12}{{\text{0}}^{\circ }}$
Hence, we have:

Where, \[OP=\vec{a}\text{ and OQ=}\vec{b}\]
Note: Solution can also end at a point where we got \[\cos \theta =\dfrac{-1}{2}\] by general trigonometric knowledge we have, that \[\cos {{120}^{\circ }}=\dfrac{-1}{2}\] so, we can directly get \[\theta ={{120}^{\circ }}\] but for more precise solution, we can also proceed by using trigonometric formula $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

JEE Advanced 2025 Revision Notes for Physics on Modern Physics
