If we given two unit vectors $\vec{a}\text{ and }\vec{b}$ such that, $\vec{a}+\vec{b}$ is also a unit vector, then find the angle between $\vec{a}\text{ and }\vec{b}$
Answer
Verified
118.5k+ views
Hint: To solve this question, we will use the given fact that, all the three vectors $\vec{a}\text{ and }\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors. A vector is called unit vector if it has magnitude as 1. Also, if two vectors are $\vec{p}\text{ and }\vec{q}$ and angle between them is $\theta $ then
\[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
First we will use the fact that $\vec{a},\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors and then we will use the formula of angle between two vectors stated above to get the answer.
Complete step-by-step solution:
Before starting the solution, let us first understand what a unit vector is. A vector is called a unit vector if the magnitude of it is 1. If $\vec{a}$ is a unit vector than $\left| a \right|=1$
Magnitude of a vector is the length of a vector. A vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ has its magnitude as $\left| {\vec{p}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Here given, $\vec{a}\text{ and }\vec{b}$ are both unit vector.
\[\Rightarrow \left| {\vec{a}} \right|=1\text{ and }\left| {\vec{b}} \right|=1\]
Also given that, $\vec{a}+\vec{b}$ is also a unit vector.
\[\Rightarrow \left| \vec{a}+\vec{b} \right|=1\]
If \[\left| {\vec{a}} \right|=1\] then squaring both sides \[\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=1\]
Similarly, \[\left| {\vec{b}} \right|=1\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1\]
And \[\left| \vec{a}+\vec{b} \right|=1\Rightarrow {{\left| \vec{a}+\vec{b} \right|}^{2}}=1\]
Now, magnitude of a vector \[{{\left| {\vec{p}} \right|}^{2}}=\vec{p}\cdot \vec{p}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Then, applying this logic on ${{\left| \vec{a}+\vec{b} \right|}^{2}}$ we get
\[\begin{align}
& {{\left| \vec{a}+\vec{b} \right|}^{2}}=\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
& \Rightarrow \left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
\end{align}\]
Opening bracket of LHS of above equation:
\[\left( \vec{a}\cdot \vec{a} \right)+\left( \vec{a}\cdot \vec{b} \right)+\left( \vec{b}\cdot \vec{a} \right)+\left( \vec{b}\cdot \vec{b} \right)=1\]
Now, \[{{\left| {\vec{a}} \right|}^{2}}=1\] applying logic of equation (i)
\[\vec{a}\cdot \vec{a}=1\]
Similarly, \[{{\left| {\vec{b}} \right|}^{2}}=1\Rightarrow \vec{b}\cdot \vec{b}=1\]
Using this both values in above equation, we get:
\[\begin{align}
& \Rightarrow 1+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}+1=1 \\
& \Rightarrow 2+2\vec{a}\cdot \vec{b}=1 \\
& \Rightarrow \vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} \\
\end{align}\]
Subtracting 2 both sides of above equation:
\[\begin{align}
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=1-2 \\
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=-1 \\
\end{align}\]
Dividing 2 both sides of above equation:
\[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will use the formula of angle between two vectors which is given as:
If two vectors are $\vec{p}\text{ and }\vec{q}$ then angle between them is $\theta $ then \[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
We have from equation (i) \[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\]
Applying formula of angle between two vectors from above, supposing angle between $\vec{a}\text{ and }\vec{b}\text{ is }\theta $ we get:
\[\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =\dfrac{-1}{2}\]
Now, \[\left| {\vec{a}} \right|=\left| {\vec{b}} \right|=1\text{ as }\vec{a}\text{ and }\vec{b}\] are unit vectors.
\[\begin{align}
& \cos \theta =\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
& \Rightarrow \theta \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{-1}{2} \right) \\
\end{align}\]
We will use trigonometric identity as $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \]
From equation (ii) we have \[\cos \theta =\dfrac{-1}{2}\]
Substituting this in above:
\[\begin{align}
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\left( \dfrac{-1}{2} \right) \\
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{1}{2} \\
\end{align}\]
Now, value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\]
Applying ${{\cos }^{-1}}$ both sides we get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \cos \left( {{180}^{\circ }}-\theta \right) \right)={{\cos }^{-1}}\left( \cos {{60}^{\circ }} \right) \\
& \Rightarrow {{180}^{\circ }}-\theta ={{60}^{\circ }} \\
& \Rightarrow \theta ={{180}^{\circ }}-{{60}^{\circ }} \\
& \Rightarrow \theta ={{120}^{\circ }} \\
\end{align}\]
Therefore, angle $\theta $ between $\vec{a}\text{ and }\vec{b}\text{ is 12}{{\text{0}}^{\circ }}$
Hence, we have:
Where, \[OP=\vec{a}\text{ and OQ=}\vec{b}\]
Note: Solution can also end at a point where we got \[\cos \theta =\dfrac{-1}{2}\] by general trigonometric knowledge we have, that \[\cos {{120}^{\circ }}=\dfrac{-1}{2}\] so, we can directly get \[\theta ={{120}^{\circ }}\] but for more precise solution, we can also proceed by using trigonometric formula $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
First we will use the fact that $\vec{a},\vec{b}\text{ and }\vec{a}\text{ + }\vec{b}$ are unit vectors and then we will use the formula of angle between two vectors stated above to get the answer.
Complete step-by-step solution:
Before starting the solution, let us first understand what a unit vector is. A vector is called a unit vector if the magnitude of it is 1. If $\vec{a}$ is a unit vector than $\left| a \right|=1$
Magnitude of a vector is the length of a vector. A vector $\vec{p}=x\hat{i}+y\hat{j}+z\hat{k}$ has its magnitude as $\left| {\vec{p}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Here given, $\vec{a}\text{ and }\vec{b}$ are both unit vector.
\[\Rightarrow \left| {\vec{a}} \right|=1\text{ and }\left| {\vec{b}} \right|=1\]
Also given that, $\vec{a}+\vec{b}$ is also a unit vector.
\[\Rightarrow \left| \vec{a}+\vec{b} \right|=1\]
If \[\left| {\vec{a}} \right|=1\] then squaring both sides \[\Rightarrow {{\left| {\vec{a}} \right|}^{2}}=1\]
Similarly, \[\left| {\vec{b}} \right|=1\Rightarrow {{\left| {\vec{b}} \right|}^{2}}=1\]
And \[\left| \vec{a}+\vec{b} \right|=1\Rightarrow {{\left| \vec{a}+\vec{b} \right|}^{2}}=1\]
Now, magnitude of a vector \[{{\left| {\vec{p}} \right|}^{2}}=\vec{p}\cdot \vec{p}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Then, applying this logic on ${{\left| \vec{a}+\vec{b} \right|}^{2}}$ we get
\[\begin{align}
& {{\left| \vec{a}+\vec{b} \right|}^{2}}=\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
& \Rightarrow \left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}+\vec{b} \right)=1 \\
\end{align}\]
Opening bracket of LHS of above equation:
\[\left( \vec{a}\cdot \vec{a} \right)+\left( \vec{a}\cdot \vec{b} \right)+\left( \vec{b}\cdot \vec{a} \right)+\left( \vec{b}\cdot \vec{b} \right)=1\]
Now, \[{{\left| {\vec{a}} \right|}^{2}}=1\] applying logic of equation (i)
\[\vec{a}\cdot \vec{a}=1\]
Similarly, \[{{\left| {\vec{b}} \right|}^{2}}=1\Rightarrow \vec{b}\cdot \vec{b}=1\]
Using this both values in above equation, we get:
\[\begin{align}
& \Rightarrow 1+\vec{a}\cdot \vec{b}+\vec{b}\cdot \vec{a}+1=1 \\
& \Rightarrow 2+2\vec{a}\cdot \vec{b}=1 \\
& \Rightarrow \vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a} \\
\end{align}\]
Subtracting 2 both sides of above equation:
\[\begin{align}
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=1-2 \\
& \Rightarrow 2\left( \vec{a}\cdot \vec{b} \right)=-1 \\
\end{align}\]
Dividing 2 both sides of above equation:
\[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
Now, finally we will use the formula of angle between two vectors which is given as:
If two vectors are $\vec{p}\text{ and }\vec{q}$ then angle between them is $\theta $ then \[\vec{p}\cdot \vec{q}=\left| {\vec{p}} \right|\left| {\vec{q}} \right|\text{cos}\theta \]
Where $\left| {\vec{p}} \right|$ is magnitude of $\vec{p}$ and $\left| {\vec{q}} \right|$ is magnitude of $\vec{q}$
We have from equation (i) \[\Rightarrow \vec{a}\cdot \vec{b}=\dfrac{-1}{2}\]
Applying formula of angle between two vectors from above, supposing angle between $\vec{a}\text{ and }\vec{b}\text{ is }\theta $ we get:
\[\left| {\vec{a}} \right|\left| {\vec{b}} \right|\cos \theta =\dfrac{-1}{2}\]
Now, \[\left| {\vec{a}} \right|=\left| {\vec{b}} \right|=1\text{ as }\vec{a}\text{ and }\vec{b}\] are unit vectors.
\[\begin{align}
& \cos \theta =\dfrac{-1}{2}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
& \Rightarrow \theta \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{-1}{2} \right) \\
\end{align}\]
We will use trigonometric identity as $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \]
From equation (ii) we have \[\cos \theta =\dfrac{-1}{2}\]
Substituting this in above:
\[\begin{align}
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=-\left( \dfrac{-1}{2} \right) \\
& \Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\dfrac{1}{2} \\
\end{align}\]
Now, value of $\cos {{60}^{\circ }}=\dfrac{1}{2}$
\[\Rightarrow \cos \left( {{180}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\]
Applying ${{\cos }^{-1}}$ both sides we get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \cos \left( {{180}^{\circ }}-\theta \right) \right)={{\cos }^{-1}}\left( \cos {{60}^{\circ }} \right) \\
& \Rightarrow {{180}^{\circ }}-\theta ={{60}^{\circ }} \\
& \Rightarrow \theta ={{180}^{\circ }}-{{60}^{\circ }} \\
& \Rightarrow \theta ={{120}^{\circ }} \\
\end{align}\]
Therefore, angle $\theta $ between $\vec{a}\text{ and }\vec{b}\text{ is 12}{{\text{0}}^{\circ }}$
Hence, we have:
Where, \[OP=\vec{a}\text{ and OQ=}\vec{b}\]
Note: Solution can also end at a point where we got \[\cos \theta =\dfrac{-1}{2}\] by general trigonometric knowledge we have, that \[\cos {{120}^{\circ }}=\dfrac{-1}{2}\] so, we can directly get \[\theta ={{120}^{\circ }}\] but for more precise solution, we can also proceed by using trigonometric formula $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $
Recently Updated Pages
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
If ax by czand b2 ac then the value of yis 1dfrac2xzleft class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy
Essay on Christmas: Celebrating the Spirit of the Season