
If ${W_1},{W _2},{W_3},{W_4}$ for an ideal gas are the magnitude of work done in isothermal, adiabatic, isobaric, isochoric reversible expansion processes. (Assume expansion to be from same initial points to same final volume wherever applicable) The correct order will be:
A) ${W_1} > {W_2} > {W_3} > {W_4}$
B) ${W_3} > {W_2} > {W_1} > {W_4}$
C) ${W_3} > {W_2} > {W_4} > {W_1}$
D) ${W_3} > {W_1} > {W_2} > {W_4}$
Answer
161.7k+ views
Hint: Work done by an ideal gas is the area under the P-V curve. In the isothermal process, the temperature of the system remains constant. In the adiabatic process, there is no transferring of heat or mass between a thermodynamic system and its surroundings. In the isobaric and isochoric process, the pressure and volume remain constant respectively.
Complete step by step solution:
Since the work done by an ideal gas is the area under the P-V curve. So we will discuss the P-V curves of all given processes (Isothermal, Adiabatic, Isobaric, Isochoric).
Isothermal vs. Adiabatic process:
The slope of the adiabatic process is always steeper than the slope of the Isothermal process.
Therefore the isothermal curve lies above the adiabatic curve in the P-V diagram. Hence, work done in the isothermal process is greater than that in an adiabatic process
${W_1} > {W_2}$
Both ${W_1}$ and ${W_2}$ are > 0.
Isochoric Process:
Since \[V = \] constant, therefore the P-V graph will have a straight line parallel to the y-axis and will have no area under that curve.
Therefore, the work done is zero.
Also,
$W = \int_{V_1}^{V_2}PdV = 0$ , since $dV$ is zero
Therefore ${W_4} = 0$
Isobaric Process:
Since P=constant, therefore the P-V graph will have a straight line parallel to V(x-axis) and will have a maximum area under that curve.
Also,
$W = P({V_1} - {V_2})$
${W_3} > 0$
Since initial pressure remains constant max work will be done in this case.
Therefore combining all the cases,
We get ${W_3} > {W_1} > {W_2} > {W_4}$.
Note: In general if the volume of the gas decreases, the pressure of the gas increases. If the volume of the gas increases, the pressure decreases. These results support Boyle's law but in Isothermal, isochoric, and isobaric processes the temperature, volume, and pressure respectively are made constant.
Complete step by step solution:
Since the work done by an ideal gas is the area under the P-V curve. So we will discuss the P-V curves of all given processes (Isothermal, Adiabatic, Isobaric, Isochoric).
Isothermal vs. Adiabatic process:
The slope of the adiabatic process is always steeper than the slope of the Isothermal process.
Therefore the isothermal curve lies above the adiabatic curve in the P-V diagram. Hence, work done in the isothermal process is greater than that in an adiabatic process
${W_1} > {W_2}$
Both ${W_1}$ and ${W_2}$ are > 0.
Isochoric Process:
Since \[V = \] constant, therefore the P-V graph will have a straight line parallel to the y-axis and will have no area under that curve.
Therefore, the work done is zero.
Also,
$W = \int_{V_1}^{V_2}PdV = 0$ , since $dV$ is zero
Therefore ${W_4} = 0$
Isobaric Process:
Since P=constant, therefore the P-V graph will have a straight line parallel to V(x-axis) and will have a maximum area under that curve.
Also,
$W = P({V_1} - {V_2})$
${W_3} > 0$
Since initial pressure remains constant max work will be done in this case.
Therefore combining all the cases,
We get ${W_3} > {W_1} > {W_2} > {W_4}$.
Note: In general if the volume of the gas decreases, the pressure of the gas increases. If the volume of the gas increases, the pressure decreases. These results support Boyle's law but in Isothermal, isochoric, and isobaric processes the temperature, volume, and pressure respectively are made constant.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
