
If ${\vec a_1}$ and ${\vec a_2}$ are two non collinear unit vector and if $\left| {{{\vec a}_1} + {{\vec a}_2}} \right| = \sqrt 3 $ then find the value of $({\vec a_1} - {\vec a_2})(2{\vec a_1} + {\vec a_2})$
(A) 2
(B) $\dfrac{3}{2}$
(C) $\dfrac{1}{2}$
(D) 1
Answer
204.6k+ views
Hint: The relation between the two unit vectors is given by $\left| {{{\vec a}_1} + {{\vec a}_2}} \right| = \sqrt 3 $. Squaring on both sides and simplifying the dot product find the value of $\theta $. Now, expand $({\vec a_1} - {\vec a_2})(2{\vec a_1} + {\vec a_2})$ and after simplifying the dot product again substitute the values of both vectors and $\theta $. On evaluating further, we get the required value.
Complete step-by-step solution:
${\vec a_1}$ and ${\vec a_2}$ are two non-collinear unit vectors so their magnitude is equal one.
It is given that, $\left| {{{\vec a}_1} + {{\vec a}_2}} \right| = \sqrt 3 $
Squaring on both sides.
${\left| {{{\vec a}_1} + {{\vec a}_2}} \right|^2} = {\left( {\sqrt 3 } \right)^2}$
${\left| {{{\vec a}_1}} \right|^2} + {\left| {{{\vec a}_2}} \right|^2} + 2{\vec a_1}.{\vec a_2} = 3$
$1 + 1 + 2\left| {{{\vec a}_1}} \right|\left| {{{\vec a}_2}} \right|\cos \theta = 3$
$2 \times 1 \times 1 \times \cos \theta = 3 - 2$
$\cos \theta = \dfrac{1}{2}$
We need to find the value of $({\vec a_1} - {\vec a_2})(2{\vec a_1} + {\vec a_2})$
Multiply both to get four individual terms.
\[ = 2{\left| {{{\vec a}_1}} \right|^2} - 2{\vec a_1}.{\vec a_2} + {\vec a_1}.{\vec a_2} - {\left| {{{\vec a}_2}} \right|^2}\]
$ = 2 - {\vec a_1}.{\vec a_2} - 1$
$ = 1 - \left| {{{\vec a}_1}} \right|\left| {{{\vec a}_2}} \right|\cos \theta $
Substitute the value of $\theta $ .
$ = 1 - 1 \times 1 \times \dfrac{1}{2}$
$ = \dfrac{1}{2}$
Hence, the value of $({\vec a_1} - {\vec a_2})(2{\vec a_1} + {\vec a_2})$ is $\dfrac{1}{2}$ and the correct option is C.
Note: Collinear vectors are those vectors which act along the same line. So, the angle between them can be zero or ${180^0}$. Coplanar vectors are where three vectors lie in the same plane. Equal, parallel, anti-parallel, collinear, zero, unit, orthogonal, polar, axial, coplanar and negative are the types of vectors.
Complete step-by-step solution:
${\vec a_1}$ and ${\vec a_2}$ are two non-collinear unit vectors so their magnitude is equal one.
It is given that, $\left| {{{\vec a}_1} + {{\vec a}_2}} \right| = \sqrt 3 $
Squaring on both sides.
${\left| {{{\vec a}_1} + {{\vec a}_2}} \right|^2} = {\left( {\sqrt 3 } \right)^2}$
${\left| {{{\vec a}_1}} \right|^2} + {\left| {{{\vec a}_2}} \right|^2} + 2{\vec a_1}.{\vec a_2} = 3$
$1 + 1 + 2\left| {{{\vec a}_1}} \right|\left| {{{\vec a}_2}} \right|\cos \theta = 3$
$2 \times 1 \times 1 \times \cos \theta = 3 - 2$
$\cos \theta = \dfrac{1}{2}$
We need to find the value of $({\vec a_1} - {\vec a_2})(2{\vec a_1} + {\vec a_2})$
Multiply both to get four individual terms.
\[ = 2{\left| {{{\vec a}_1}} \right|^2} - 2{\vec a_1}.{\vec a_2} + {\vec a_1}.{\vec a_2} - {\left| {{{\vec a}_2}} \right|^2}\]
$ = 2 - {\vec a_1}.{\vec a_2} - 1$
$ = 1 - \left| {{{\vec a}_1}} \right|\left| {{{\vec a}_2}} \right|\cos \theta $
Substitute the value of $\theta $ .
$ = 1 - 1 \times 1 \times \dfrac{1}{2}$
$ = \dfrac{1}{2}$
Hence, the value of $({\vec a_1} - {\vec a_2})(2{\vec a_1} + {\vec a_2})$ is $\dfrac{1}{2}$ and the correct option is C.
Note: Collinear vectors are those vectors which act along the same line. So, the angle between them can be zero or ${180^0}$. Coplanar vectors are where three vectors lie in the same plane. Equal, parallel, anti-parallel, collinear, zero, unit, orthogonal, polar, axial, coplanar and negative are the types of vectors.
Recently Updated Pages
JEE Main Candidate Login 2026 and Registration Portal | Form Access

Household Electricity Important Concepts and Tips for JEE

JEE Main 2023 (January 31st Shift 1) Physics Question Paper with Answer Key

Clemmensen and Wolff Kishner Reduction - Important Concepts and Tips for JEE

JEE Main Maths Paper Pattern 2026: Marking Scheme & Sections

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Atomic Structure: Definition, Models, and Examples

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

JEE Main 2026 Session 1 Form Correction – Procedure, Fees & Editing Guidelines

Other Pages
Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Equation of Trajectory in Projectile Motion: Derivation & Proof

