
If $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$, then find $\dfrac{{\partial u}}{{\partial x}}$.
A. $ - \dfrac{y}{{{x^2} + {y^2}}}$
B. $\dfrac{x}{{\sqrt {1 - {y^2}} }}$
C. $ - \dfrac{y}{{\sqrt {{x^2} - {y^2}} }}$
D. $ - \dfrac{y}{{x\sqrt {{x^2} - {y^2}} }}$
Answer
219k+ views
Hint: To find the partial derivative of the given equation we will find the derivative with respect to $x$. In the derivative, we will consider $y$ as a constant.
Formula Used:
$\dfrac{\partial }{{\partial x}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
$\dfrac{{\partial u}}{{\partial x}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}$
Complete step by step solution:
Given equation is $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
Now find the partial derivative of $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$ with respect to $x$.
Apply chain rule:
$\dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\left( { - \dfrac{1}{{{x^2}}}} \right)$
Simplify the above equation
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {\dfrac{{{x^2} - {y^2}}}{{{x^2}}}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
Cancel out $x$ from the denominator and numerator of the right-side expression
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = - \dfrac{y}{{x\sqrt {{x^2} - {y^2}} }}$
Option ‘D’ is correct
Note: Partial derivative is almost the same as normal derivative. But in the partial derivative we are considering only one variable and other variables are treated as constant. When we find the partial derivative $\dfrac{\partial }{{\partial x}}$, then we consider $x$ as a variable and $y$ as a constant.
Formula Used:
$\dfrac{\partial }{{\partial x}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
$\dfrac{{\partial u}}{{\partial x}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}$
Complete step by step solution:
Given equation is $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
Now find the partial derivative of $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$ with respect to $x$.
Apply chain rule:
$\dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\left( { - \dfrac{1}{{{x^2}}}} \right)$
Simplify the above equation
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {\dfrac{{{x^2} - {y^2}}}{{{x^2}}}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
Cancel out $x$ from the denominator and numerator of the right-side expression
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = - \dfrac{y}{{x\sqrt {{x^2} - {y^2}} }}$
Option ‘D’ is correct
Note: Partial derivative is almost the same as normal derivative. But in the partial derivative we are considering only one variable and other variables are treated as constant. When we find the partial derivative $\dfrac{\partial }{{\partial x}}$, then we consider $x$ as a variable and $y$ as a constant.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

