
If $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$, then find $\dfrac{{\partial u}}{{\partial x}}$.
A. $ - \dfrac{y}{{{x^2} + {y^2}}}$
B. $\dfrac{x}{{\sqrt {1 - {y^2}} }}$
C. $ - \dfrac{y}{{\sqrt {{x^2} - {y^2}} }}$
D. $ - \dfrac{y}{{x\sqrt {{x^2} - {y^2}} }}$
Answer
217.8k+ views
Hint: To find the partial derivative of the given equation we will find the derivative with respect to $x$. In the derivative, we will consider $y$ as a constant.
Formula Used:
$\dfrac{\partial }{{\partial x}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
$\dfrac{{\partial u}}{{\partial x}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}$
Complete step by step solution:
Given equation is $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
Now find the partial derivative of $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$ with respect to $x$.
Apply chain rule:
$\dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\left( { - \dfrac{1}{{{x^2}}}} \right)$
Simplify the above equation
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {\dfrac{{{x^2} - {y^2}}}{{{x^2}}}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
Cancel out $x$ from the denominator and numerator of the right-side expression
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = - \dfrac{y}{{x\sqrt {{x^2} - {y^2}} }}$
Option ‘D’ is correct
Note: Partial derivative is almost the same as normal derivative. But in the partial derivative we are considering only one variable and other variables are treated as constant. When we find the partial derivative $\dfrac{\partial }{{\partial x}}$, then we consider $x$ as a variable and $y$ as a constant.
Formula Used:
$\dfrac{\partial }{{\partial x}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
$\dfrac{{\partial u}}{{\partial x}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}$
Complete step by step solution:
Given equation is $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
Now find the partial derivative of $u = {\sin ^{ - 1}}\left( {\dfrac{y}{x}} \right)$ with respect to $x$.
Apply chain rule:
$\dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }}\dfrac{\partial }{{\partial x}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\dfrac{\partial }{{\partial x}}\left( {\dfrac{1}{x}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} }} \cdot y\left( { - \dfrac{1}{{{x^2}}}} \right)$
Simplify the above equation
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{1}{{\sqrt {\dfrac{{{x^2} - {y^2}}}{{{x^2}}}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} \cdot \left( { - \dfrac{y}{{{x^2}}}} \right)$
Cancel out $x$ from the denominator and numerator of the right-side expression
$ \Rightarrow \dfrac{\partial }{{\partial x}}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{y}{x}} \right)} \right] = - \dfrac{y}{{x\sqrt {{x^2} - {y^2}} }}$
Option ‘D’ is correct
Note: Partial derivative is almost the same as normal derivative. But in the partial derivative we are considering only one variable and other variables are treated as constant. When we find the partial derivative $\dfrac{\partial }{{\partial x}}$, then we consider $x$ as a variable and $y$ as a constant.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

