
If three unequal numbers $P,Q,R$ are in H.P. and their squares are in A.P., then the ratio $P:Q:R$ is
A. $1 - \sqrt 3 :2:1 + \sqrt 3 $
B. $1:\sqrt 2 : - \sqrt 3 $
C. $1: - \sqrt 2 :\sqrt 3 $
D. $ - 1 \pm \sqrt 3 :2: - 1 \mp \sqrt 3 $
Answer
218.4k+ views
Hint: Given that three unequal numbers $P,Q,R$ are in H.P. It means its reciprocals are in A.P. So, $\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$. Let $Q = 2k$ and $PR = k(P + R)$. Also given that the squares of the numbers ${P^2},{Q^2},{R^2}$ are in A.P. So, $2{Q^2} = {P^2} + {R^2}$. Substitute $Q = 2k$ and $PR = k(P + R)$ in this equation. After substitution a quadratic formula in $\left( {P + R} \right)$ will be obtained. Solving this equation two roots will be obtained. For two different roots, two different values of $P,Q,R$ will be obtained and hence you can find the required ratio.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Place Value vs Face Value: Key Differences Explained for Students

Natural Numbers vs Whole Numbers: Key Differences Explained

Length vs. Height: Key Differences Explained for Students

Rows vs Columns: Key Differences Explained Simply

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

