
If three unequal numbers $P,Q,R$ are in H.P. and their squares are in A.P., then the ratio $P:Q:R$ is
A. $1 - \sqrt 3 :2:1 + \sqrt 3 $
B. $1:\sqrt 2 : - \sqrt 3 $
C. $1: - \sqrt 2 :\sqrt 3 $
D. $ - 1 \pm \sqrt 3 :2: - 1 \mp \sqrt 3 $
Answer
217.2k+ views
Hint: Given that three unequal numbers $P,Q,R$ are in H.P. It means its reciprocals are in A.P. So, $\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$. Let $Q = 2k$ and $PR = k(P + R)$. Also given that the squares of the numbers ${P^2},{Q^2},{R^2}$ are in A.P. So, $2{Q^2} = {P^2} + {R^2}$. Substitute $Q = 2k$ and $PR = k(P + R)$ in this equation. After substitution a quadratic formula in $\left( {P + R} \right)$ will be obtained. Solving this equation two roots will be obtained. For two different roots, two different values of $P,Q,R$ will be obtained and hence you can find the required ratio.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Moment of Inertia of a Cube: Formula, Calculation & Examples

Moment of Inertia of a Disc Explained Simply

Moment of Inertia of a Square: Formula & Calculation Guide

Moment of Inertia of Annular Disc: Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

