
If three unequal numbers $P,Q,R$ are in H.P. and their squares are in A.P., then the ratio $P:Q:R$ is
A. $1 - \sqrt 3 :2:1 + \sqrt 3 $
B. $1:\sqrt 2 : - \sqrt 3 $
C. $1: - \sqrt 2 :\sqrt 3 $
D. $ - 1 \pm \sqrt 3 :2: - 1 \mp \sqrt 3 $
Answer
162.9k+ views
Hint: Given that three unequal numbers $P,Q,R$ are in H.P. It means its reciprocals are in A.P. So, $\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$. Let $Q = 2k$ and $PR = k(P + R)$. Also given that the squares of the numbers ${P^2},{Q^2},{R^2}$ are in A.P. So, $2{Q^2} = {P^2} + {R^2}$. Substitute $Q = 2k$ and $PR = k(P + R)$ in this equation. After substitution a quadratic formula in $\left( {P + R} \right)$ will be obtained. Solving this equation two roots will be obtained. For two different roots, two different values of $P,Q,R$ will be obtained and hence you can find the required ratio.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Complete step by step solution:
Here $P,Q,R$ are in H.P., so
$\dfrac{2}{Q} = \dfrac{1}{P} + \dfrac{1}{R}$
Add the fractions in the right hand side of the equation.
$ \Rightarrow \dfrac{2}{Q} = \dfrac{{P + R}}{{PR}}$
Take reciprocal of both the expressions on both sides of the equation.
$ \Rightarrow \dfrac{Q}{2} = \dfrac{{PR}}{{P + R}}$
Let $\dfrac{Q}{2} = \dfrac{{PR}}{{P + R}} = k$(say)
Then $\dfrac{Q}{2} = k$ and $\dfrac{{PR}}{{P + R}} = k$
$Q = 2k$ and $PR = k(P + R).....(i)$
Again, the squares of the numbers i.e. ${P^2},{Q^2},{R^2}$ are in A.P. So,
$2{Q^2} = {P^2} + {R^2}$
Use the formula ${a^2} + {b^2} = {(a + b)^2} - 2ab$
$ \Rightarrow 2{Q^2} = {\left( {P + R} \right)^2} - 2PR$
Substitute $Q = 2k$ and $PR = k\left( {P + R} \right)$
$ \Rightarrow 8{k^2} = {\left( {P + R} \right)^2} - 2k\left( {P + R} \right)$
This is a quadratic equation in $\left( {P + R} \right)$
Let $P + R = S$
Then the equation becomes $8{k^2} = {S^2} - 2kS$
Arrange the terms of the equation
$ \Rightarrow {S^2} - 2kS - 8{k^2} = 0.....(ii)$
Factorize the expression on the left hand side of the equation.
$\begin{array}{l}{S^2} - 2kS - 8{k^2}\\ = {S^2} - 4kS + 2kS - 8{k^2}\\ = S\left( {S - 4k} \right) + 2k\left( {S - 4k} \right)\\ = \left( {S - 4k} \right)\left( {S + 2k} \right)\end{array}$
From equation $(ii)$, we get
$ \Rightarrow \left( {S - 4k} \right)\left( {S + 2k} \right) = 0$
If $S - 4k = 0$, then $S = 4k$
If $S + 2k = 0$, then $S = - 2k$
We assumed that $P + R = S$
So, $P + R = 4k$ or $P + R = - 2k$
Substitute the expressions for $\left( {P + R} \right)$ in equation $(i)$
If $P + R = 4k$, then $PR = 4{k^2}$
If $P + R = - 2k$, then $PR = - 2{k^2}$
Now, use the formula ${\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab$
$\therefore {\left( {P - R} \right)^2} = {\left( {P + R} \right)^2} - 4PR$
If $P + R = 4k$, then $PR = 4{k^2}$, so
$\begin{array}{l}{\left( {P - R} \right)^2} = 16{k^2} - 16{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 0\\ \Rightarrow P - R = 0\\ \Rightarrow P = R\end{array}$
But it is given that $P,Q,R$ are not equal. So, it is impossible.
Now, we have only one option i.e. $P + R = - 2k...(iii)$, then $PR = - 2{k^2}$
Using these, we get
$\begin{array}{l}{\left( {P - R} \right)^2} = 4{k^2} + 8{k^2}\\ \Rightarrow {\left( {P - R} \right)^2} = 12{k^2}\\ \Rightarrow P - R = \pm \sqrt {12{k^2}} \\ \Rightarrow P - R = \pm 2\sqrt 3 k.....(iv)\end{array}$
Taking $P + R = - 2k$ and $P - R = 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k + 2\sqrt 3 k\\ \Rightarrow P = - k + \sqrt 3 k\\ \Rightarrow P = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
Putting the value of $P$ in equation $(iii)$, we get
$\begin{array}{l}\left( { - 1 + \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
∴ We have $P = \left( { - 1 + \sqrt 3 } \right)k$ and $R = \left( { - 1 - \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 + \sqrt 3 } \right)k:2k:\left( { - 1 - \sqrt 3 } \right)k = \left( { - 1 + \sqrt 3 } \right):2:\left( { - 1 - \sqrt 3 } \right).....(v)$
Taking $P + R = - 2k$ and $P - R = - 2\sqrt 3 k$, we get
$\begin{array}{l}2P = - 2k - 2\sqrt 3 k\\ \Rightarrow P = - k - \sqrt 3 k\\ \Rightarrow P = \left( { - 1 - \sqrt 3 } \right)k\end{array}$
Putting the value of P in equation iii, we get
$\begin{array}{l}\left( { - 1 - \sqrt 3 } \right)k + R = - 2k\\ \Rightarrow R = - 2k - \left( { - 1 - \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 2 + 1 + \sqrt 3 } \right)k\\ \Rightarrow R = \left( { - 1 + \sqrt 3 } \right)k\end{array}$
We have $P = \left( { - 1 - \sqrt 3 } \right)k$ and $R = \left( { - 1 + \sqrt 3 } \right)k$ and $Q = 2k$
Hence the ratio $P:Q:R = \left( { - 1 - \sqrt 3 } \right)k:2k:\left( { - 1 + \sqrt 3 } \right)k = \left( { - 1 - \sqrt 3 } \right):2:\left( { - 1 + \sqrt 3 } \right).....(vi)$
From the ratios obtained in $(v)$ and $(vi)$, we get
The ratio $P:Q:R$ is $\left( { - 1 \pm \sqrt 3 } \right):2:\left( { - 1 \mp \sqrt 3 } \right)$
Note: Some terms are in H.P. means the reciprocals of the terms are in A.P.
It is given in the question that the numbers $P,Q,R$ are unequal. For this reason, $P = R$ has been rejected.
The obtained value of $P$ is $\left( { - 1 + \sqrt 3 } \right)$ for $R = - 1 - \sqrt 3 $ and the obtained value of $P$ is $\left( { - 1 - \sqrt 3 } \right)$ for $R = - 1 + \sqrt 3 $. You should keep it in mind while writing the answer.
Recently Updated Pages
How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Difference Between Acetic Acid and Glacial Acetic Acid: JEE Main 2024

Trending doubts
JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees
