
If $\theta $ lies in the first quadrant and $\cos \theta = \dfrac{8}{{17}},$ then the value of \[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\] is
A. $\left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
B. $\left( {\dfrac{{\sqrt 3 + 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
C. $\left( {\dfrac{{\sqrt 3 - 1}}{2} - \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
D. $\left( {\dfrac{{\sqrt 3 + 1}}{2} - \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
Answer
217.8k+ views
Hint: In order to solve this type of question, first we will consider the given equation and simplify it by applying trigonometric identities. Then, we will substitute the given value in it and simplify it further to get the desired correct answer.
Formula used:
$\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right]$
$\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Complete step by step solution:
We are given that,
$\cos \theta = \dfrac{8}{{17}}$………………..equation$\left( 1 \right)$
$\Rightarrow \sin \theta = \sqrt{1- \cos^{2} \theta}$
$\Rightarrow \sin \theta = \sqrt{1- {\left(\dfrac{8}{17}\right)}^{2} }$
$ \Rightarrow \sin \theta = \dfrac{{15}}{{17}}$ ………………..equation$\left( 2 \right)$
Consider,
\[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\]
$ = \left( {\cos {{30}^ \circ }\cos \theta - \sin {{30}^ \circ }\sin \theta } \right) + \left( {\cos {{45}^ \circ }\cos \theta + \sin {{45}^ \circ }\sin \theta } \right) + \left( {\cos {{120}^ \circ }\cos \theta + \sin {{120}^ \circ }\sin \theta } \right)$ $\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right],\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Solving it,
$ = \left( {\dfrac{{\sqrt 3 }}{2}\cos \theta - \dfrac{1}{2}\sin \theta } \right) + \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right) + \left( {\dfrac{{ - 1}}{2}\cos \theta + \dfrac{{\sqrt 3 }}{2}\sin \theta } \right)$ $\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right],\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],\left[ {\because \sin {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],$
$\left[ {\because \cos {{120}^ \circ } = \cos \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \dfrac{{ - 1}}{2}} \right],\left[ {\because \sin {{120}^ \circ } = \sin \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \sin {{60}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
Simplifying it,
$ = \cos \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right) + \sin \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)$
$ = \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)\left( {\cos \theta + \sin \theta } \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right),$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{8}{{17}} + \dfrac{{15}}{{17}}} \right)$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
$\therefore $ The correct option is A.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer.
Sometimes students get confused with the formulas of \[\cos \left( {A + B} \right)\] and \[\cos \left( {A + B} \right)\].
Formula used:
$\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right]$
$\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Complete step by step solution:
We are given that,
$\cos \theta = \dfrac{8}{{17}}$………………..equation$\left( 1 \right)$
$\Rightarrow \sin \theta = \sqrt{1- \cos^{2} \theta}$
$\Rightarrow \sin \theta = \sqrt{1- {\left(\dfrac{8}{17}\right)}^{2} }$
$ \Rightarrow \sin \theta = \dfrac{{15}}{{17}}$ ………………..equation$\left( 2 \right)$
Consider,
\[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\]
$ = \left( {\cos {{30}^ \circ }\cos \theta - \sin {{30}^ \circ }\sin \theta } \right) + \left( {\cos {{45}^ \circ }\cos \theta + \sin {{45}^ \circ }\sin \theta } \right) + \left( {\cos {{120}^ \circ }\cos \theta + \sin {{120}^ \circ }\sin \theta } \right)$ $\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right],\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Solving it,
$ = \left( {\dfrac{{\sqrt 3 }}{2}\cos \theta - \dfrac{1}{2}\sin \theta } \right) + \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right) + \left( {\dfrac{{ - 1}}{2}\cos \theta + \dfrac{{\sqrt 3 }}{2}\sin \theta } \right)$ $\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right],\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],\left[ {\because \sin {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],$
$\left[ {\because \cos {{120}^ \circ } = \cos \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \dfrac{{ - 1}}{2}} \right],\left[ {\because \sin {{120}^ \circ } = \sin \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \sin {{60}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
Simplifying it,
$ = \cos \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right) + \sin \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)$
$ = \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)\left( {\cos \theta + \sin \theta } \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right),$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{8}{{17}} + \dfrac{{15}}{{17}}} \right)$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
$\therefore $ The correct option is A.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer.
Sometimes students get confused with the formulas of \[\cos \left( {A + B} \right)\] and \[\cos \left( {A + B} \right)\].
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Elastic Collisions in Two Dimensions

Understanding Newton’s Laws of Motion

JEE Main 2026 Syllabus Updated for Physics, Chemistry and Mathematics

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

