
If $\theta $ lies in the first quadrant and $\cos \theta = \dfrac{8}{{17}},$ then the value of \[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\] is
A. $\left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
B. $\left( {\dfrac{{\sqrt 3 + 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
C. $\left( {\dfrac{{\sqrt 3 - 1}}{2} - \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
D. $\left( {\dfrac{{\sqrt 3 + 1}}{2} - \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
Answer
164.1k+ views
Hint: In order to solve this type of question, first we will consider the given equation and simplify it by applying trigonometric identities. Then, we will substitute the given value in it and simplify it further to get the desired correct answer.
Formula used:
$\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right]$
$\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Complete step by step solution:
We are given that,
$\cos \theta = \dfrac{8}{{17}}$………………..equation$\left( 1 \right)$
$\Rightarrow \sin \theta = \sqrt{1- \cos^{2} \theta}$
$\Rightarrow \sin \theta = \sqrt{1- {\left(\dfrac{8}{17}\right)}^{2} }$
$ \Rightarrow \sin \theta = \dfrac{{15}}{{17}}$ ………………..equation$\left( 2 \right)$
Consider,
\[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\]
$ = \left( {\cos {{30}^ \circ }\cos \theta - \sin {{30}^ \circ }\sin \theta } \right) + \left( {\cos {{45}^ \circ }\cos \theta + \sin {{45}^ \circ }\sin \theta } \right) + \left( {\cos {{120}^ \circ }\cos \theta + \sin {{120}^ \circ }\sin \theta } \right)$ $\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right],\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Solving it,
$ = \left( {\dfrac{{\sqrt 3 }}{2}\cos \theta - \dfrac{1}{2}\sin \theta } \right) + \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right) + \left( {\dfrac{{ - 1}}{2}\cos \theta + \dfrac{{\sqrt 3 }}{2}\sin \theta } \right)$ $\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right],\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],\left[ {\because \sin {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],$
$\left[ {\because \cos {{120}^ \circ } = \cos \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \dfrac{{ - 1}}{2}} \right],\left[ {\because \sin {{120}^ \circ } = \sin \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \sin {{60}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
Simplifying it,
$ = \cos \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right) + \sin \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)$
$ = \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)\left( {\cos \theta + \sin \theta } \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right),$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{8}{{17}} + \dfrac{{15}}{{17}}} \right)$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
$\therefore $ The correct option is A.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer.
Sometimes students get confused with the formulas of \[\cos \left( {A + B} \right)\] and \[\cos \left( {A + B} \right)\].
Formula used:
$\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right]$
$\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Complete step by step solution:
We are given that,
$\cos \theta = \dfrac{8}{{17}}$………………..equation$\left( 1 \right)$
$\Rightarrow \sin \theta = \sqrt{1- \cos^{2} \theta}$
$\Rightarrow \sin \theta = \sqrt{1- {\left(\dfrac{8}{17}\right)}^{2} }$
$ \Rightarrow \sin \theta = \dfrac{{15}}{{17}}$ ………………..equation$\left( 2 \right)$
Consider,
\[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\]
$ = \left( {\cos {{30}^ \circ }\cos \theta - \sin {{30}^ \circ }\sin \theta } \right) + \left( {\cos {{45}^ \circ }\cos \theta + \sin {{45}^ \circ }\sin \theta } \right) + \left( {\cos {{120}^ \circ }\cos \theta + \sin {{120}^ \circ }\sin \theta } \right)$ $\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right],\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Solving it,
$ = \left( {\dfrac{{\sqrt 3 }}{2}\cos \theta - \dfrac{1}{2}\sin \theta } \right) + \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right) + \left( {\dfrac{{ - 1}}{2}\cos \theta + \dfrac{{\sqrt 3 }}{2}\sin \theta } \right)$ $\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right],\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],\left[ {\because \sin {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],$
$\left[ {\because \cos {{120}^ \circ } = \cos \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \dfrac{{ - 1}}{2}} \right],\left[ {\because \sin {{120}^ \circ } = \sin \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \sin {{60}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
Simplifying it,
$ = \cos \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right) + \sin \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)$
$ = \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)\left( {\cos \theta + \sin \theta } \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right),$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{8}{{17}} + \dfrac{{15}}{{17}}} \right)$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
$\therefore $ The correct option is A.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer.
Sometimes students get confused with the formulas of \[\cos \left( {A + B} \right)\] and \[\cos \left( {A + B} \right)\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
