
If $\theta $ lies in the first quadrant and $\cos \theta = \dfrac{8}{{17}},$ then the value of \[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\] is
A. $\left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
B. $\left( {\dfrac{{\sqrt 3 + 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
C. $\left( {\dfrac{{\sqrt 3 - 1}}{2} - \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
D. $\left( {\dfrac{{\sqrt 3 + 1}}{2} - \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
Answer
232.8k+ views
Hint: In order to solve this type of question, first we will consider the given equation and simplify it by applying trigonometric identities. Then, we will substitute the given value in it and simplify it further to get the desired correct answer.
Formula used:
$\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right]$
$\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Complete step by step solution:
We are given that,
$\cos \theta = \dfrac{8}{{17}}$………………..equation$\left( 1 \right)$
$\Rightarrow \sin \theta = \sqrt{1- \cos^{2} \theta}$
$\Rightarrow \sin \theta = \sqrt{1- {\left(\dfrac{8}{17}\right)}^{2} }$
$ \Rightarrow \sin \theta = \dfrac{{15}}{{17}}$ ………………..equation$\left( 2 \right)$
Consider,
\[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\]
$ = \left( {\cos {{30}^ \circ }\cos \theta - \sin {{30}^ \circ }\sin \theta } \right) + \left( {\cos {{45}^ \circ }\cos \theta + \sin {{45}^ \circ }\sin \theta } \right) + \left( {\cos {{120}^ \circ }\cos \theta + \sin {{120}^ \circ }\sin \theta } \right)$ $\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right],\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Solving it,
$ = \left( {\dfrac{{\sqrt 3 }}{2}\cos \theta - \dfrac{1}{2}\sin \theta } \right) + \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right) + \left( {\dfrac{{ - 1}}{2}\cos \theta + \dfrac{{\sqrt 3 }}{2}\sin \theta } \right)$ $\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right],\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],\left[ {\because \sin {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],$
$\left[ {\because \cos {{120}^ \circ } = \cos \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \dfrac{{ - 1}}{2}} \right],\left[ {\because \sin {{120}^ \circ } = \sin \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \sin {{60}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
Simplifying it,
$ = \cos \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right) + \sin \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)$
$ = \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)\left( {\cos \theta + \sin \theta } \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right),$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{8}{{17}} + \dfrac{{15}}{{17}}} \right)$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
$\therefore $ The correct option is A.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer.
Sometimes students get confused with the formulas of \[\cos \left( {A + B} \right)\] and \[\cos \left( {A + B} \right)\].
Formula used:
$\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right]$
$\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Complete step by step solution:
We are given that,
$\cos \theta = \dfrac{8}{{17}}$………………..equation$\left( 1 \right)$
$\Rightarrow \sin \theta = \sqrt{1- \cos^{2} \theta}$
$\Rightarrow \sin \theta = \sqrt{1- {\left(\dfrac{8}{17}\right)}^{2} }$
$ \Rightarrow \sin \theta = \dfrac{{15}}{{17}}$ ………………..equation$\left( 2 \right)$
Consider,
\[\cos \left( {{{30}^ \circ } + \theta } \right) + \cos \left( {{{45}^ \circ } - \theta } \right) + \cos \left( {{{120}^ \circ } - \theta } \right)\]
$ = \left( {\cos {{30}^ \circ }\cos \theta - \sin {{30}^ \circ }\sin \theta } \right) + \left( {\cos {{45}^ \circ }\cos \theta + \sin {{45}^ \circ }\sin \theta } \right) + \left( {\cos {{120}^ \circ }\cos \theta + \sin {{120}^ \circ }\sin \theta } \right)$ $\left[ {\because \cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B} \right],\left[ {\because \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B} \right]$
Solving it,
$ = \left( {\dfrac{{\sqrt 3 }}{2}\cos \theta - \dfrac{1}{2}\sin \theta } \right) + \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right) + \left( {\dfrac{{ - 1}}{2}\cos \theta + \dfrac{{\sqrt 3 }}{2}\sin \theta } \right)$ $\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right],\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],\left[ {\because \sin {{45}^ \circ } = \dfrac{1}{{\sqrt 2 }}} \right],$
$\left[ {\because \cos {{120}^ \circ } = \cos \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \dfrac{{ - 1}}{2}} \right],\left[ {\because \sin {{120}^ \circ } = \sin \left( {{{180}^ \circ } - {{60}^ \circ }} \right) = \sin {{60}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
Simplifying it,
$ = \cos \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right) + \sin \theta \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)$
$ = \left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}} \right)\left( {\cos \theta + \sin \theta } \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right),$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{8}{{17}} + \dfrac{{15}}{{17}}} \right)$
$ = \left( {\dfrac{{\sqrt 3 - 1}}{2} + \dfrac{1}{{\sqrt 2 }}} \right)\dfrac{{23}}{{17}}$
$\therefore $ The correct option is A.
Note: Choose the suitable trigonometric identities and be very sure while simplifying them. This type of question requires the use of correct application of trigonometric rules to get the correct answer.
Sometimes students get confused with the formulas of \[\cos \left( {A + B} \right)\] and \[\cos \left( {A + B} \right)\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

