
If $\theta $ is the angle between unit vectors $\overrightarrow A $ and $\overrightarrow B $ , then $\left( {\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }}} \right)$ is equal to
(A) ${\tan ^2}\left( {\dfrac{\theta }{2}} \right)$
(B) ${\sin ^2}\left( {\dfrac{\theta }{2}} \right)$
(C) ${\cot ^2}\left( {\dfrac{\theta }{2}} \right)$
(D) ${\cos ^2}\left( {\dfrac{\theta }{2}} \right)$
Answer
207k+ views
Hint: To solve this question, you first need to understand that since both the vectors are unit vectors, their magnitudes will be $1$ . Hence, the dot product of both the vectors will be nothing but the cosine of the angle between the vectors. To further solve the question, you also need to know the properties of trigonometry:
$2{\sin ^2}\left( {\dfrac{\theta }{2}} \right) = 1 - \cos \theta $ and $2{\cos ^2}\left( {\dfrac{\theta }{2}} \right) = 1 + \cos \theta $
Complete step by step solution:
We will proceed with the same approach as mentioned in the hint section of the solution to the question asked to us. Let us first have a look at what is given to us in the question and what does it mean:
Both the vectors $\overrightarrow A $ and $\overrightarrow B $ are unit vectors, hence, we can confidently say that:
$\left| {\overrightarrow A } \right| = \left| {\overrightarrow B } \right| = 1$
The angle between both the given unit vectors is given to be $\theta $
Now, we can define the dot-product of both the vectors as:
$\overrightarrow A .\overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $
Substituting $\left| {\overrightarrow A } \right| = \left| {\overrightarrow B } \right| = 1$ in the equation above, we get:
$
\overrightarrow A .\overrightarrow B = 1 \times 1 \times \cos \theta \\
\Rightarrow \overrightarrow A .\overrightarrow B = \cos \theta \\
$
Now, let us have a look at the equation that is given to us in the question itself:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }}$
If we substitute the value of the dot-products of the vectors as we found out above, $\overrightarrow A .\overrightarrow B = \cos \theta $ , we get:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}$
Now, we can see that this term can not be further simplified without the use of trigonometric properties of half angles, which are as follows:
$2{\sin ^2}\left( {\dfrac{\theta }{2}} \right) = 1 - \cos \theta $
$2{\cos ^2}\left( {\dfrac{\theta }{2}} \right) = 1 + \cos \theta $
As we can see, we can substitute the above property in the numerator part of the term and the property in the below in the denominator part of the term from the question, this leaves us with:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }} = \dfrac{{2{{\sin }^2}\left( {\dfrac{\theta }{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}}$
We can clearly see that the two in both numerator and denominator can be cancelled out, furthermore, we also see that:
$\dfrac{{{{\sin }^2}\left( {\dfrac{\theta }{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}} = {\tan ^2}\left( {\dfrac{\theta }{2}} \right)$
Putting this is the equation, we get:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }} = {\tan ^2}\left( {\dfrac{\theta }{2}} \right)$
Hence, we can see that the correct option to the question is nothing but the option (A) as it matches with the value that we got after solving the question.
Note: Many students neglect the important information of both the vectors being unit vectors. Thus, they have the magnitude of both the vectors in their expression while solving the question and get stuck in the process. Also, you must remember the important trigonometric properties to help you solve such questions faster and efficiently.
$2{\sin ^2}\left( {\dfrac{\theta }{2}} \right) = 1 - \cos \theta $ and $2{\cos ^2}\left( {\dfrac{\theta }{2}} \right) = 1 + \cos \theta $
Complete step by step solution:
We will proceed with the same approach as mentioned in the hint section of the solution to the question asked to us. Let us first have a look at what is given to us in the question and what does it mean:
Both the vectors $\overrightarrow A $ and $\overrightarrow B $ are unit vectors, hence, we can confidently say that:
$\left| {\overrightarrow A } \right| = \left| {\overrightarrow B } \right| = 1$
The angle between both the given unit vectors is given to be $\theta $
Now, we can define the dot-product of both the vectors as:
$\overrightarrow A .\overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $
Substituting $\left| {\overrightarrow A } \right| = \left| {\overrightarrow B } \right| = 1$ in the equation above, we get:
$
\overrightarrow A .\overrightarrow B = 1 \times 1 \times \cos \theta \\
\Rightarrow \overrightarrow A .\overrightarrow B = \cos \theta \\
$
Now, let us have a look at the equation that is given to us in the question itself:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }}$
If we substitute the value of the dot-products of the vectors as we found out above, $\overrightarrow A .\overrightarrow B = \cos \theta $ , we get:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}$
Now, we can see that this term can not be further simplified without the use of trigonometric properties of half angles, which are as follows:
$2{\sin ^2}\left( {\dfrac{\theta }{2}} \right) = 1 - \cos \theta $
$2{\cos ^2}\left( {\dfrac{\theta }{2}} \right) = 1 + \cos \theta $
As we can see, we can substitute the above property in the numerator part of the term and the property in the below in the denominator part of the term from the question, this leaves us with:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }} = \dfrac{{2{{\sin }^2}\left( {\dfrac{\theta }{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}}$
We can clearly see that the two in both numerator and denominator can be cancelled out, furthermore, we also see that:
$\dfrac{{{{\sin }^2}\left( {\dfrac{\theta }{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}} = {\tan ^2}\left( {\dfrac{\theta }{2}} \right)$
Putting this is the equation, we get:
$\dfrac{{1 - \overrightarrow A .\overrightarrow B }}{{1 + \overrightarrow A .\overrightarrow B }} = {\tan ^2}\left( {\dfrac{\theta }{2}} \right)$
Hence, we can see that the correct option to the question is nothing but the option (A) as it matches with the value that we got after solving the question.
Note: Many students neglect the important information of both the vectors being unit vectors. Thus, they have the magnitude of both the vectors in their expression while solving the question and get stuck in the process. Also, you must remember the important trigonometric properties to help you solve such questions faster and efficiently.
Recently Updated Pages
JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

JEE Main 2026 Eligibility Criteria – Age Limit, Marks, Attempts, and More

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Hybridisation in Chemistry – Concept, Types & Applications

