
If the value of \[\int_1^k {(2x - 3)dx = 12} \], then find the value of k.
\[({\text{a}})\] \[ - 2\] and\[{\text{5}}\]
\[{\text{(b)}}\] \[{\text{5}}\]and \[{\text{2}}\]
\[{\text{(c)}}\] \[{\text{2}}\] and\[{\text{ - 5}}\]
\[{\text{(d)}}\]None of these
Answer
217.8k+ views
Hint: Evaluate the given integral carefully without missing any term in between.
We have the given integral as
\[\int_1^k {(2k - 3)dx} \]
After integrating the above equation, we get,
\[ = [{x^2} - 3x]_1^k\]
\[ = ({k^2} - 3k) - (1 - 3)\]
\[ = {k^2} - 3k + 2\]
According to the question,
We are given that the value of the given integral is equal to $12$,
Therefore, we get
\[{k^2} - 3k + 2 = 12\]
\[{k^2} - 3k - 10 = 0\]
This equation can be re written in the form as
\[{k^2} - 5k + 2k - 10 = 0\]
\[k(k - 5) + 2(k - 5) = 0\]
\[(k + 2)(k - 5) = 0\]
\[\therefore k = - 2,5\]
Therefore, the required solution is \[({\text{a}})\] \[ - 2\] and\[{\text{5}}\].
Note: In these types of questions, the given integral is solved, then equated to the values given in the question, which on evaluation gives the value of the required variable.
We have the given integral as
\[\int_1^k {(2k - 3)dx} \]
After integrating the above equation, we get,
\[ = [{x^2} - 3x]_1^k\]
\[ = ({k^2} - 3k) - (1 - 3)\]
\[ = {k^2} - 3k + 2\]
According to the question,
We are given that the value of the given integral is equal to $12$,
Therefore, we get
\[{k^2} - 3k + 2 = 12\]
\[{k^2} - 3k - 10 = 0\]
This equation can be re written in the form as
\[{k^2} - 5k + 2k - 10 = 0\]
\[k(k - 5) + 2(k - 5) = 0\]
\[(k + 2)(k - 5) = 0\]
\[\therefore k = - 2,5\]
Therefore, the required solution is \[({\text{a}})\] \[ - 2\] and\[{\text{5}}\].
Note: In these types of questions, the given integral is solved, then equated to the values given in the question, which on evaluation gives the value of the required variable.
Recently Updated Pages
Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Electrostatic Potential and Capacitance Explained

EMF and Internal Resistance of a Cell: Definitions & Formula

Entropy in Thermodynamic Processes: Explained Simply

Equivalent Capacitance Explained: Formulas, Series & Parallel

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

