
If the value of \[\int_1^k {(2x - 3)dx = 12} \], then find the value of k.
\[({\text{a}})\] \[ - 2\] and\[{\text{5}}\]
\[{\text{(b)}}\] \[{\text{5}}\]and \[{\text{2}}\]
\[{\text{(c)}}\] \[{\text{2}}\] and\[{\text{ - 5}}\]
\[{\text{(d)}}\]None of these
Answer
233.1k+ views
Hint: Evaluate the given integral carefully without missing any term in between.
We have the given integral as
\[\int_1^k {(2k - 3)dx} \]
After integrating the above equation, we get,
\[ = [{x^2} - 3x]_1^k\]
\[ = ({k^2} - 3k) - (1 - 3)\]
\[ = {k^2} - 3k + 2\]
According to the question,
We are given that the value of the given integral is equal to $12$,
Therefore, we get
\[{k^2} - 3k + 2 = 12\]
\[{k^2} - 3k - 10 = 0\]
This equation can be re written in the form as
\[{k^2} - 5k + 2k - 10 = 0\]
\[k(k - 5) + 2(k - 5) = 0\]
\[(k + 2)(k - 5) = 0\]
\[\therefore k = - 2,5\]
Therefore, the required solution is \[({\text{a}})\] \[ - 2\] and\[{\text{5}}\].
Note: In these types of questions, the given integral is solved, then equated to the values given in the question, which on evaluation gives the value of the required variable.
We have the given integral as
\[\int_1^k {(2k - 3)dx} \]
After integrating the above equation, we get,
\[ = [{x^2} - 3x]_1^k\]
\[ = ({k^2} - 3k) - (1 - 3)\]
\[ = {k^2} - 3k + 2\]
According to the question,
We are given that the value of the given integral is equal to $12$,
Therefore, we get
\[{k^2} - 3k + 2 = 12\]
\[{k^2} - 3k - 10 = 0\]
This equation can be re written in the form as
\[{k^2} - 5k + 2k - 10 = 0\]
\[k(k - 5) + 2(k - 5) = 0\]
\[(k + 2)(k - 5) = 0\]
\[\therefore k = - 2,5\]
Therefore, the required solution is \[({\text{a}})\] \[ - 2\] and\[{\text{5}}\].
Note: In these types of questions, the given integral is solved, then equated to the values given in the question, which on evaluation gives the value of the required variable.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

