
If the sum of two unit vectors is also a vector of unit magnitude, the magnitude of the difference of the two-unit vectors is:
A) $1unit$
B) $2units$
C) $\sqrt 3 units$
D) $Zero$
Answer
135.6k+ views
Hint: We know a vector having unit magnitude and a direction, which is referred to as unit vectors. We know vectors can be added using the triangle law of parallelogram law. We can use the formula of addition to obtaining the value of the dot products of the two vectors, and this value is then used to find the difference between the two vectors.
Formula used:
Addition of vectors:
$|(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Subtraction of vectors:
$|(\vec a - \vec b){|^2} = |\vec a| + \vec b| - 2.\vec a.\vec b$
Where:
$\vec a$ and $\vec b$ are unit vectors.
Complete step by step solution:
When two or more vectors are added, the sum of the vectors is referred to as the resultant vector.
In the question, we are given that the resultant vector of the addition of two vectors is also a vector; thus, we use the formula:
$\Rightarrow |(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Let us consider the resultant vector as $\vec c$, and as we know,
$\Rightarrow |\vec c| = |\vec a + \vec b|^2 = 1$ and
since $\vec a$ and $\vec b$ are unit vectors, we write $|a| = |b| = 1$
Therefore, when we put the values in the equation, we get:
$\Rightarrow {1^2} = 1 + 1 + 2.\vec a.\vec b$
Thus, on solving this equation, we get:
$\Rightarrow \vec a.\vec b = - \dfrac{1}{2}$
Now, as per the question, we need to find the difference between the two unit vectors:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 - 2.\vec a.\vec b$
Now, putting the value of $\vec a.\vec b$ as obtained above, we obtain:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 + 2 \times \dfrac{1}{2}$
Hence, on solving, we get:
$\Rightarrow |(\vec a - \vec b){|^2} = 3$
Therefore,
$\Rightarrow |(\vec a - \vec b){|^{}} = \sqrt 3$
Thus, option (C) is correct.
Note: The Triangle law of vector addition states that if two vectors represent two sides of a triangle, in both order and magnitude, then the third side will represent the magnitude and direction of the resultant vector. The other law is the Parallelogram law, which states if two vectors represent two adjacent sides of a parallelogram, the diagonal of the parallelogram represents the resultant vector.
Formula used:
Addition of vectors:
$|(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Subtraction of vectors:
$|(\vec a - \vec b){|^2} = |\vec a| + \vec b| - 2.\vec a.\vec b$
Where:
$\vec a$ and $\vec b$ are unit vectors.
Complete step by step solution:
When two or more vectors are added, the sum of the vectors is referred to as the resultant vector.
In the question, we are given that the resultant vector of the addition of two vectors is also a vector; thus, we use the formula:
$\Rightarrow |(\vec a + \vec b){|^2} = |\vec a| + \vec b| + 2.\vec a.\vec b$
Let us consider the resultant vector as $\vec c$, and as we know,
$\Rightarrow |\vec c| = |\vec a + \vec b|^2 = 1$ and
since $\vec a$ and $\vec b$ are unit vectors, we write $|a| = |b| = 1$
Therefore, when we put the values in the equation, we get:
$\Rightarrow {1^2} = 1 + 1 + 2.\vec a.\vec b$
Thus, on solving this equation, we get:
$\Rightarrow \vec a.\vec b = - \dfrac{1}{2}$
Now, as per the question, we need to find the difference between the two unit vectors:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 - 2.\vec a.\vec b$
Now, putting the value of $\vec a.\vec b$ as obtained above, we obtain:
$\Rightarrow |(\vec a - \vec b){|^2} = 1 + 1 + 2 \times \dfrac{1}{2}$
Hence, on solving, we get:
$\Rightarrow |(\vec a - \vec b){|^2} = 3$
Therefore,
$\Rightarrow |(\vec a - \vec b){|^{}} = \sqrt 3$
Thus, option (C) is correct.
Note: The Triangle law of vector addition states that if two vectors represent two sides of a triangle, in both order and magnitude, then the third side will represent the magnitude and direction of the resultant vector. The other law is the Parallelogram law, which states if two vectors represent two adjacent sides of a parallelogram, the diagonal of the parallelogram represents the resultant vector.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

A body is falling from a height h After it has fallen class 11 physics JEE_Main

Collision - Important Concepts and Tips for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3
